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Introduction

Bio-macromolecules and their assembles are gener-

ally thought of as molecular machines functioning

under certain conditions. This de®nition provides

NMR spectroscopists with two major arguments that

validate their necessity for intellectual reading of the

`book of life' written in the genome. First, for this

purpose one needs spatial structures (co-ordinates of

atoms) of bio-molecules at physiological conditions

or in media, which mimic them as far as possible. In

this respect high-resolution NMR in liquids provides

much better opportunities than does its close com-

petitors. Moreover, the complexity of the bio-molecu-

lar systems studied by NMR techniques and the

accuracy of the NMR structures have grown steadily

over the last 15 years. Second, for our understanding

of the functioning of bio-molecules not only accurate

coordinates of atoms but also the time-scales and

amplitudes of their motions are required. There is no

doubt about the importance of the internal motions for

recognition, binding, signalling, catalysis and other

events occurring in living organisms or biotechno-

logical systems and for the proper folding and

stabilisation of bio-molecules. In this respect NMR

can provide unique information about bio-molecular
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dynamics and their response to an external stimulus.

Indeed heteronuclear relaxation experiments of

isotope (15N and/or 13C) enriched bio-molecules

have become widely accepted tools for characterisa-

tion of their global and internal motions. Despite the

remarkable increase in the number of publications

dealing with NMR relaxation studies of bio-molecular

dynamics the progress in this area has been much

slower as compared to structural NMR. In principle

this might indicate that NMR approaches to the analy-

sis of internal dynamics of bio-molecules require a

fundamental reconsideration. Therefore this review

should not be taken as an account of the progress

already achieved, but rather as a practical guidance

and discussion of complications in studies of macro-

molecular motions based on NMR relaxation data.
15N relaxation studies have become routine for analy-

sis of protein intramolecular motions. Therefore, the

review is focused on the two-spin 1H± 15N system

found in a protein backbone. In Section 1 we consider

the current state of NMR relaxation theory in liquids

and its application to the analysis of relaxation in the

two spin 1/2 system, practical aspects of relaxation

measurements for a protein backbone 1H± 15N group

and the parameters governing relaxation in this

system. In Section 2 the effect of Brownian rotational

diffusion on NMR relaxation is discussed. Attention is

paid to computational methods for analysis of macro-

molecular hydrodynamics and their application to

proteins. In Section 3 we discuss the problems,

range of validity and advances in the development

of the approaches used for analysis of 15N relaxation

data in proteins.

1. NMR relaxation in liquids

NMR relaxation is the process that brings a system

of nuclear spins back to the equilibrium state. NMR

relaxation is a consequence of the coupling of the spin

system to the surrounding media (termed the lattice or

thermal bath). In particular, different kinds of spin

interactions alter upon random molecular motions

and perturb the Hamiltonian of the spin system result-

ing in relaxation of the ensemble of nuclear spins.

Spin interactions, modulated by random molecular

motions, provide the means for exchange of energy

between the spin system and the thermal bath (e.g.

overall rotation or intramolecular vibrations). There-

fore, the relaxation rates for the spin system depend on

the parameters of molecular motions.

The ®rst phenomenological theories of relaxation

[1,2] appeared in the very beginning of the develop-

ment of the NMR method. Semi-classical relaxation

theory appears to be the most useful for modern NMR

applications [3±8]. This theory considers the system

of nuclear spins from a quantum mechanical point of

view using the density operator formalism (see [9])

whereas the lattice is treated classically. A theory

considering both the lattice and the spin system

from a quantum mechanical point of view was also

developed (see Ref. [5]). However, in most aspects the

semi-classical and quantum mechanical considera-

tions provide identical results. An exception is that

the semi-classical theory cannot correctly describe

the equilibrium state of the system.

In this section we concisely review general aspects

of semi-classical relaxation theory and its application

to relaxation in a two-spin heteronuclear system.

Chemical exchange phenomena, affecting the

measured transverse relaxation rates, are also

discussed. In the last two sub-sections of this section

we consider heteronuclear two-spin systems of the

protein backbone. In particular, some technical

aspects of relaxation measurements for protein back-

bone 15N nuclei are discussed and parameters govern-

ing relaxation in backbone 15N± 1H and 13Ca± 1H

systems are reviewed.

1.1. Fundamentals of semi-classical relaxation theory

1.1.1. Master equation

The evolution of a spin system, considered from a

quantum mechanical point of view, is described by the

density operator r(t), whose time dependence is given

by the Liouville±von Neumann equation:

d

dt
r�t� � 2i�H0 1 H1�t�; r�t��; �1:1�

where H0 is the time independent part of the Hamil-

tonian of the spin system and H1(t) is the Hamiltonian

for a random perturbation, with kH1�t�l � 0: The

Hamiltonians in Eq. (1.1) are written in units of

the Plank constant ": The perturbation due to a

random dynamic process, H1(t), causes a relaxation

of the system towards equilibrium. The stationary
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component H0 of the Hamiltonian can be excluded

when considering the system in the interaction repre-

sentation (this corresponds to switching to the rotating

frame in classical considerations). An arbitrary opera-

tor A in this representation is written as:

AI�t� � eiH0tA e2iH0t
: �1:2�

The Liouville±von Neumann equation in the inter-

action representation becomes:

d

dt
rI�t� � 2i�HI

1�t�; rI�t��; �1:3�

it is solved by successive approximations:

rI�t� � rI
0�t�1 rI

1�t�1 rI
2�t�1 ¼ �1:4a�

where

rI
0 � rI�0� and

rI
i11�t� � 2i

Zt

0
�HI

1�t 0�; rI
i �t 0�� dt 0:

�1:4b�

To second-order the solution of Eq. (1.3) is given

by:

d

dt
rI�t� � 2i�HI

1�t�; rI�0��

2
Zt

0
�HI

1�t��HI
1�t 2 t�; rI�0��� dt; �1:5�

where t � t 2 t 0 (here the time derivative of r I(t) in

Eq. (1.4a) is taken). The observable behaviour of the

system is described by the average density operator

s I�t� � krI�t�l; whose time evolution is obtained by

averaging both sides of Eq. (1.5) over the ensemble

of all random Hamiltonians HI
1�t�: Since kHI

1�t�l � 0;

the ®rst term in Eq. (1.5) vanishes. A further simpli-

®cation of Eq. (1.5) is allowed when using the

following assumptions:

1. HI
1�t� and r I(t) are uncorrelated and can be aver-

aged separately.

2. The evolution of the density operator rI�t� caused

by a random Hamiltonian HI
1�t� is slow and r I(0)

on the right-hand side of Eq. (1.5) can be

replaced by r I(t).

3. It is permissible to replace the upper limit of the

integral in Eq. (1.5) by 11.

4. It is permissible to neglect the higher-order

approximations in Eq. (1.5).

In general, these assumptions are valid for weak

perturbations HI
1�t� and short correlation times t c of

the random processes. A detailed discussion of the

range of validity of these assumptions can be found

in Ref. [5]. Averaging of both sides of Eq. (1.5)

using the assumptions (1)±(3) results in the master

equation written in the following form:

d

dt
s I�t� � 2

Z1

0
k�HI

1�t��HI
1�t 2 t�;s I�t���l dt: �1:6�

Since semi-classical theory cannot correctly describe

the equilibrium state of the system (i.e. it predicts

equal populations for the states, which would

correspond to an in®nite temperature), the density

operator s I(t) in Eq. (1.6) is usually replaced by

s I(t) 2 s 0, where s 0 is the equilibrium density

operator written as:

s0 � e2H0=kBT

Tr�e2H0=kBT � ; �1:7�

kB is the Boltzmann constant, T the temperature and

Tr means the trace operation.

1.1.2. Operator form of the master equation.

Correlation functions

The Hamiltonian of the random perturbation H1(t)

can be written in the following form:

H1�t� �
X
m

TmFm�t� �
X
m

T1
m Fp

m�t�; �1:8�

where the Tm are operators acting on spin variables,

Fm(t) are stationary random functions describing the

lattice, and the cross and asterisk denote Hermitian

and complex conjugate operations, respectively. The

dual form of H1(t) in Eq. (1.8) indicates that H1(t) is a

Hermitian operator. The spin operators Tm are the

components of an irreducible tensor operator of rank

l, and the random functions Fm(t) are proportional to

spherical harmonics of rank l (see Appendix A). The

value of l depends on the relaxation mechanisms

considered. In particular, for dipole±dipole relax-

ation, relaxation due to the chemical shift anisotropy

and for quadrupolar relaxation l � 2: The trans-

formation of spin operators Tm to the interaction
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representation results in:

TI
m � eiH0tTm e2iH0t �

X
n

Tn
m eivn

m tm; �1:9�

where Tn
m meet the relationship �H0; T

n
m� � vn

mTn
m; and

vn
m are the differences between the eigenfrequencies

of the Hamiltonian H0 (see Ref. [10]). The Hamil-

tonian of a random perturbation in the interaction

representation HI
1�t� is then expressed as:

HI
1�t� �

X
m

Tl
mFm�t� �

X
m;n

Tn
mFm�t� eivn

mt
: �1:10�

Substitution of HI
1�t� from Eq. (1.10) into Eq. (1.6)

results in the master equation written in operator form:

d

dt
s I�t� �

2
X

m;m 0;n;n 0
�21�m 0 ei�vn

m1vn 0
m 0 �t�Tn 0

m 0 �Tn
m;s

I�t�2 s0��

�
Z1

0
kFm�t�Fp

2m 0 �t 1 t�l e2ivn
mt dt: (1.11)

Since the random process resulting in relaxation is

stationary, the factor kFm�t�Fp
2m 0 �t 1 t�l on the right-

hand side of Eq. (1.11) can be replaced by

kFm�0�Fp
2m 0 �t�l: Moreover, for spherical harmonics,

Slm and Vl 0m 0 of ranks l and l 0, averaging over the

ensemble results in the following relationship [7,11]:

kSl 0m 0 �0�Vlm�t�l � dl 0;ldm 0;2m�21�mkSl0�0�Vl0�t�l;
�1:12a�

where d is the Kronecker delta. Therefore, the factor

kFm�0�Fp
2m 0 �t�l in Eq. (1.11) can be written as:

kFm�0�Fp
2m 0 �t�l � dm 0;2mkF0�0�F0�t�l; �1:12b�

which allows to us avoid the summation over the

index m 0 in the right-hand side of Eq. (1.11) by

replacing m 0 by 2m.

A further simpli®cation of Eq. (1.11) is obtained

by the secular approximation: due to the rapidly

oscillating factors ei�vn
m1vn 0

2m�t the terms with vn
m 1

vn 0
2m ± 0 in Eq. (1.11) are averaged to zero before

the relaxation occurs and, thus, may be neglected.

The remaining secular terms in Eq. (1.11) ®t the

condition n � n 0; which holds in the absence of

degenerate eigenfrequencies of the Hamiltonian H0

(i.e. if all vn
m 1 vn 0

2m�n ± n 0� exceed the value

kuHI
1�t�ul2tc; that determines the characteristic rate

for change of s I(t)).

Let us now introduce the concepts of the correla-

tion function C(t ) and the spectral density function

J(v ), which is the cosine Fourier transform of the

correlation function C(t ):

C�t� � kF0�0�V0�t�l; �1:13a�

J�v� �
Z1

0
C�t� cos�vt� dt: �1:13b�

Here F and V are proportional to spherical harmonics

of the same rank. If F�t� ; V�t� the functions C(t)

and J(v ) are referred to as auto-correlation, otherwise

they are termed as cross-correlation. Let us also de®ne

the quantity k(v ) as:

k�v� �
Z1

0
C�t� sin�vt� dt: �1:13c�

The integral in the right-hand side of Eq. (1.11) is

equal to J(v ) 2 ik(v ). However, it can be shown

[5,6] that the complex part of the integral results in

small second-order shifts of the eigenvalues of the

Hamiltonian (the so-called dynamic frequency shift),

which may be safely neglected when considering

relaxation.

Finally, applying the above mentioned simpli®ca-

tions to Eq. (1.11), one can write the operator form of

the master equation:

d

dt
s I�t� � 2

X
m;n

�21�mJ�vn
m��Tn

2m; �Tn
m;s

I�t�2 s0��;

�1:14a�

d

dt
s�t� � 2i�H0;s�t��2

X
m;n

�21�mJ�vn
m�

� �Tn
2m; �Tn

m;s�t�2 s0��; �1:14b�
where Eq. (1.14b) is written in the SchroÈdinger

representation (laboratory frame).

1.1.3. Master equation for mean values

Experimentally observable quantities are connected

with the spin operators Q by the following relation-

ships:

kQl�t� � Tr�Qs�t��; �1:15a�
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kQl I�t� � Tr�Qs I�t��: �1:15b�
For studies of slow changes of kQl due to the relaxa-

tion process it is convenient to consider the time

evolution of kQl in the interaction representation. If

the operator Q commutes with the Hamiltonian H0,

Eqs. (1.15a) and (1.15b) provide identical results.

The time dependence of kQlI is calculated by multi-

plying both sides of Eq. (1.14a) with Q and perform-

ing the trace operation:

d

dt
kQlI�t� � 2�Tr�Ĝ �Q�s I�t��2 Tr�Ĝ �Q�s0��

� kĜ �Q�l I�t�2 kĜ �Q�l0; (1.16a)

where Ĝ is the relaxation super-operator given by:

Ĝ �Q� �
X
m;n

�21�mJ�vn
m��Tn

m; �Tn
2m;Q��: �1:16b�

Using Eqs. (1.16a) and (1.16b) one can easily derive

the expressions for relaxation rates for any observable

quantity connected with a spin operator Q. A basis of

spin operators, Bsi, may be de®ned. For the complete

analysis of relaxation in a particular spin system it is

convenient to derive the expressions for relaxation

rates for all basis operators kBsil:

d

dt
kBslI�t� � R�kBslI�t�2 kBslI

0�; �1:17�

where B is the vector composed of basis operators Bsi,

R is the matrix comprising auto- and cross-relaxation

rates for kBsil, which is referred to as the relaxation

matrix. For the computations it is convenient to use

the matrix forms of operators Tn
m and Bsi.

The following computational procedure may be

used:

1. Represent the Hamiltonian of a random process

HI
1�t� as a product of random functions Fm(t),

proportional to spherical harmonics, with compo-

nents of an irreducible tensor operator Tn
m (Eq.

(1.10)). Calculate the eigenfrequencies vn
m:

2. Evaluate Ĝ �Q� for a given operator Q by applying

the double commutators of Eq. (1.16b). Calculate

the right-hand side of Eq. (1.16a).

3. If a basis of spin operators, Bsi, has been de®ned,

one may expand the result over this basis. The

coef®cients of the expansion will correspond to

the rates of cross-relaxation from kQl to kBsil.

1.2. Relaxation in a heteronuclear two-spin 1/2 system

Below we consider a spin system composed of two

unlike spin-1/2 nuclei I and S. The relaxation in this

system is due to dipole±dipole (DD) interactions

between the two spins and their chemical shift aniso-

tropy (CSA), modulated by random molecular

motions. A typical example of a two-spin heteronuc-

lear system is a 15N± 1H nuclear pair of a protein back-

bone amide group. For such a group, the relaxation

rates, derived here for an ideal two-spin system, could

be modi®ed to account for: (i) the DD relaxation from

the amide proton to other protons; and (ii) contribu-

tions of the conformational exchange on a micro

millisecond time scale (Section 1.3). Below we derive

the expressions for the relaxation rates for all Carte-

sian product operators of a two-spin 1/2 system. In

some cases the expressions for shift basis and

single-transition basis operators are also presented.

Special attention is paid to the effect of cross-correla-

tion between DD and CSA interactions, and to the

cross-correlation between the CSA interactions of

the spins I and S.

1.2.1. Hamiltonian for dipole±dipole interactions

The most important mechanism expected to cause

relaxation is the DD interaction between magnetic

moments of neighbouring nuclei, modulated by

random molecular motions. The Hamiltonian for

two spins I and S, interacting by the dipolar mechan-

ism, is given by:

H D
1 �t� � m0

4p

gIgS"

r3�t� I´S 2
3

r2�t� �I´r�t���S´r�t��
� �

:

�1:18�
Here I and S denote the operators of spin angular

momentum for the nuclei, g I and g S are their gyro-

magnetic ratios, r(t) is the internuclear unit vector, r(t)

is the internuclear distance, m 0 is the permeability of

free space. By transforming r(t) to polar co-ordinates

one can write the Hamiltonian HD
1 �t� in a form

analogous to Eq. (1.8). Corresponding components

of the irreducible tensor operator Tm, acting on spin

variables, and the random functions Fm(t) (Eq. (1.8))
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are given by:

Tm �
�����
3

10

r
m0

4p
gIgS"kr23lT2m �1:19a�

T2;0 � 2
1��
6
p �4IzSz 2 �I1S2 1 I2S1��

T2;^1 � ^�IzS^ 1 I^Sz�

T2;^2 � 2I^S^

Fm�t� �
����
4p
p

Yp
2m�u�t�;w�t��; �1:19b�

where Ii and Si �i � x; y; z� are the components of

operators I and S, I^ and S^ are shift operators de®ned

as I^ � Ix ^ iIy and S^ � Sx ^ iSy;Y2m are spherical

harmonics of rank 2 (see Appendix A), u (t) and w (t)

are time-dependent polar angles de®ning the orienta-

tion of the vector r(t) in the laboratory co-ordinate

frame, and the index m runs over (22,2). It is worth

noting that Eqs. (1.19a) and (1.19b) are valid only if

the orientation of the internuclear vector changes

much more slowly than the internuclear distance

(see Refs. [12,13]), or if the amplitudes of vibrations

involving the internuclear distance are negligibly

small. Otherwise, the following de®nitions for Tm

and Fm(t) should be used:

Tm �
�����
3

10

r
m0

4p
gIgS"kr26l1=2T2m

Fm�t� �
����
4p
p

kr26l21=2 Yp
2m�u�t�;w�t��

r3�t� :

�1:19c�

In Eqs. (1.19b) and (1.19c)) Fm(t) are normalised in

such a manner that the correlation function C�t� �
kF0�0�F0�t�l (Eq. (1.13a)) is equal to 1 at t � 0:

It can be shown that for isotropic media the

dipolar Hamiltonian is averaged to zero by the

random molecular motions, i.e. kHD
1 �t�l � 0:

Thus, for the dipolar relaxation the time-indepen-

dent Hamiltonian H0 (Eq. (1.1)) corresponds to the

Zeeman Hamiltonian for nuclear moments inter-

acting with the permanent magnetic ®eld B0

directed along the z-axis:

H0 � 2gI�B0´I�2 gS�B0´S� � vI Iz 1 vSSz; �1:20�
where vI � gIB0 and vS � gSB0 are the Larmor

frequencies of spins I and S. Using the relation-

ships:

eiH0tIz e2iH0t � Iz

eiH0tI^ e2iH0t � I^ e^ivI t

eiH0tSz e2iH0t � Sz

eiH0tS^ e2iH0t � S^ e^ivst (1.21)

one can easily transform the Hamiltonian HD
1 �t� to

the interaction representation. The spin operators

Tm (Eqs. (1.19a)±(1.19c)) in the interaction repre-

sentation are written as:

TI
0 � 2 4AD��

6
p IzSz

T1
0
;v1

0
�0

1 AD��
6
p I1S2 ei�vI 2vS�t

T2
0
;v2

0
�vI 2vS

1 AD��
6
p I2S1 e2 i�vI 2vS�t

T3
0
;v3

0
�2�vI 2vS�

�1:22a�

TI
^1 � ^ADIzS^ e^ ivI t

T1
^ 1

;v1
^ 1
�^vI

^ADI^Sz e^ ivSt

T2
^ 1

;v2
^ 1
�^vS

T1
^2 � ADI^S^ e^ i�vI 1vS�t

T1
^ 2

;v1
^ 2
�^�vI 1vS�

;

where

AD �
�����
3

10

r
m0

4p
gIgS"kr23l; �1:22b�

assuming that Eqs. (1.19a) and (1.19b) are valid.

Eqs. (1.22a) and (1.22b) allows us to express the

Hamiltonian �HD
1 �I�t� in a form analogous to Eq.

(1.10), which is required for the derivation of the

relaxation rates. The corresponding Tn
m and vn

m are

written below each term in Eq. (1.22a).

1.2.2. Hamiltonian for anisotropic chemical shift

The local electronic environment produces an addi-

tional magnetic ®eld at the location of the nucleus

being placed in a strong magnetic ®eld. This effect

is termed nuclear shielding. The local electronic

environment of the nucleus is, in general, not

isotropic. Thus, the changes in nuclear shielding

upon random molecular reorientation are expected

to result in relaxation. The Hamiltonian for nuclear

shielding is a bilinear combination with respect to the
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components of the external ®eld B0 and the spin I:

HCS
1�I� � gIB0´V´I: �1:23�

Here, V denotes the chemical shielding tensor. Eq.

(1.23) is written in a molecular co-ordinate frame,

rigidly attached to the eigenvectors of the shielding

tensor.

The chemical shielding tensor may be represented

as a sum of isotropic and anisotropic parts, Vis and

Va. The isotropic part Vis does not change with the

rotation of the co-ordinate system and has all three

eigenvalues equal to V (below we assume that uVu p
1�: The anisotropic part Va, is the second-rank

symmetric traceless tensor referred to as the shielding

anisotropy tensor (here and in the following we

neglect the anti-symmetric part of the shielding tensor

[14]). Va has the eigenvalues dz; dx � 21=2�1 2 h�dz

and dy � 21=2�1 1 h�dz; where h � �dx 2 dy�=dz is

the termed the asymmetry parameter. Thus, the

Hamiltonian HCS
1�I� (Eq. (1.23)) can be separated into

two parts corresponding to isotropic and anisotropic

shielding 2HCSI
1�I� and HCSA

1�I� : The isotropic part HCSI
1�I�

does not change with molecular motions and can be

included into the Zeeman Hamiltonian (in this case

the Larmor frequency for spin I is given by vI � �1 2
V�gIB0 < gIB0�: The anisotropic part HCSA

1�I� changes

during random molecular motions and results in

relaxation. For an isotropic media it can be shown

that kHCSA
1�I� �t�l � 0:

Transformation of Eq. (1.23) to the laboratory

frame, where the magnetic ®eld B0 is directed along

z-axis, results in HCSA
1�I� written in a form analogous to

Eq. (1.8):

HCSA
1�I� �

X2

m�2 2

TmFm; �1:24a�

where

T0 � 2
ACSA�I���

6
p �4BzIz 2 �B1I2 1 B2I1��

� 2
4ACSA�I���

6
p B0Iz

T^1 � ^ACSA�I��BzI^ 1 IzB^� � ^ACSA�I�B0I^

T^2 � 2ACSA�I�B^I^ � 0 (1.24b)

Fm�t� � �1 1 h2
=3�2 1

2 � ����
4p
p

Yp
2m�b;a�

1
������
5=6h

p �D2
m;2�a;b;g�1 D2

m;22�a;b; g���
�1:24c�

ACSA�I� � 2

�����
3

10

r
1

2
gIdz�1 1 h2

=3� 1
2 �1:24d�

where Tm are the components of an irreducible tensor

operator of rank 2, a , b and g are the time-dependent

Euler angles de®ning the orientation of the molecular

co-ordinate frame with respect to the laboratory

frame, D2
mm 0 �a;b; g� are Wigner functions (see

Appendix A). As in the case of dipolar interactions,

the Fm(t) are normalised to meet the condition C�t� �
1 at t � 0 (see Eq. (1.13a)). In the case of an asym-

metric shielding anisotropy tensor (here and below

`asymmetric' means that dx ± dy and h ± 0) it is

cumbersome to calculate the correlation function

C(t) from Fm(t) given by Eq. (1.24c). This can be

avoided by representing Va as a sum of two axially

symmetric tensors that are considered as independent

sources of relaxation [15]. For an axially symmetric

shielding anisotropy tensor Eq. (1.24c) is reduced to:

Fm�t� �
����
4p
p

Yp
2m�b;a� �1:24e�

which is equivalent to Eq. (1.19b) for the dipolar

relaxation (with the exception that b and a here are

the polar angles de®ning the orientation of the

symmetry axis of the shielding anisotropy tensor).

Using Eq. (1.21) one can easily write the spin

operators Tm (Eq. (1.24b)) in the interaction represen-

tation:

�T0�I � 2
4ACSA�I�B0Iz��

6
p

T0
0
;v0

0
�0

�T^1�I � ^ACSA�I�B0I^ e^ ivI t

T0
1
;v0

1
�^vI

�T^2�I � 0

�1:25�

Eq. (1.25) allows us to express �HCSA
1�I� �I in a form

analogous to Eq. (1.10), which is required for the

derivation of the relaxation rates (the corresponding

Tn
m and vn

m are written below each term in Eq. (1.25)).
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1.2.3. Expressions for relaxation rates

Let us now derive the expressions for all auto- and

cross-relaxation rates for the mean values of Cartesian

product operators of a two spin 1/2 system1 relaxing

by the DD and CSA mechanisms. Below it is assumed

that: (i) the distance between the nuclei changes much

faster than the orientation of the internuclear vector;

and (ii) the shielding anisotropy tensors for the spins

are axially symmetric �hI � hS � 0�:
The existence of several relaxation mechanisms in

the two-spin system considered causes effects of

relaxation interference (or cross-correlation effects).

Two relaxation mechanisms A and B might be

accounted for independently when the cross-correla-

tion function CAB�t� � kFA
0 �0�FB

0 �t�l is zero. This

condition holds if: (i) FA
m�t� and FB

m�t� are proportional

to the spherical harmonics of different ranks; or (ii)

FA
m�t� and FB

m�t� are uncorrelated. Otherwise, expres-

sions for the relaxation rates would depend both on

the auto-correlation and cross-correlation spectral

density functions (Eqs. (1.13a), (1.13b)). The effects

of cross-correlation account for cross-relaxation path-

ways, which are prohibited when the relaxation is

considered for each mechanism independently. The

cross-correlated cross-relaxation often results in

complex multi-exponential decays for the compo-

nents of magnetisation, which complicates the analy-

sis of the relaxation data. On the other hand the rates

of the cross-correlated cross-relaxation might provide

useful information about the molecular motions.

Examples of cross-correlation effects are interference

between the dipolar interactions for two nuclear pairs in

a multi-spin system [5,16] or interference between dipo-

lar and CSA interactions [15]. The effects of DD±CSA

I, DD±CSA S and CSA I±CSA S cross-correlation will

be considered here for a two-spin 1/2 system.

The master equation for mean values of the

Cartesian product operators (Eqs. (1.16a)±(1.17)) is

easily obtained using the expressions for the spin

operators Tn
m and the frequencies vn

m for the DD

(Eqs. (1.22a) and (1.22b)) and CSA (Eq. (1.25))

relaxation mechanisms. The right-hand side of the

master equation (Eq. (1.16a)) contains the relaxation

super-operator Ĝ �Q� (Eq. (1.16b)) given by:

Ĝ �Q� � Ĝ D�Q�1 Ĝ CSA�I��Q�1 Ĝ CSA�S��Q�

1 Ĝ D;CSA�I��Q�1 Ĝ D;CSA�S��Q�

1 Ĝ CSA�I�;CSA�S��Q�; �1:26�
where Q is the product operator considered. The terms

composing the relaxation super-operator (Eq. (1.26))

are summarised in Table 1. As it is seen from Table 1

the terms in Eq. (1.26) depend on the auto- and

cross-correlation spectral density functions JD(v ),

JCSA(I)(v ), JCSA(S)(v ), JD,CSA(I)(v), JD,CSA(S)(v ),

JCSA(I),CSA(S)(v ) describing reorientation of the inter-

nuclear vector and the principal axes of the shielding

anisotropy tensors of the spins I and S. However, it

can be shown (see e.g. Ref. [17]) that for isotropic

rotation diffusion and/or for small angles uD,CSA(I),

uD,CSA(S), uCSA(I),CSA(S) a good approximation for the

spectral density functions is provided by:

J�v� � JD�v� � JCSA�I��v� � JCSA�S��v�

� JD;CSA�I��v�
P2�cos uD;CSA�I�� �

JD;CSA�S��v�
P2�cos uD;CSA�S��

� JCSA�I�;CSA�S��v�
P2�cos uCSA�I�;CSA�S�� ; �1:27�

where P2�x� � �3x2 2 1�=2 is a second-rank Legendre

polynomial. By calculating kĜ �Q�l�t� and kĜ �Q�l0

(Eq. (1.16a)), and expanding the result over the

basis of Cartesian product operators one can ®ll the

relaxation matrix R (Eq. (1.17)) for the Cartesian

product operators by the relaxation rates.

According to the block structure of the relaxation

matrix R in a two-spin 1/2 system the Cartesian product

operators can be separated into several groups. The

group (Iz, Sz, 2IzSz) is composed of longitudinal coher-

ences for spins I and S and longitudinal two spin-order.

The groups (Ix; 2IxSz), (Iy; 2IySz), (Sx; 2IzSx), (Sy; 2IzSy)

are composed of transverse in-phase and anti-

phase coherences. The groups �2IxSx; 2IySy� and

�2IxSy; 2IySx� consist of two-spin coherences, which

are linear combinations of zero-quantum I1S2, I2S1

and double-quantum I1S1, I2S2 coherences.

The relaxation in the group (Iz, Sz, 2IzSz) (termed as
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2IzSz where E is the identity operator.



longitudinal) is described by the equation:

d

dt

kIzl 2 Iz0

kSzl 2 Sz0

k2IzSzl

2664
3775

� 2

RD
1I 1 RCSA

1I rD rD;CSA�I�

rD RD
1S 1 RCSA

1S rD;CSA�S�

rD;CSA�I� rD;CSA�S� RCSA
1I 1 RCSA

1S 1 l

26664
37775

�
kIzl 2 Iz0

kSzl 2 Sz0

k2IzSzl

2664
3775; (1.28a)

where

RD
1I � A2

D� 1
3

J�vI 2 vS�1 J�vI�1 2J�vI 1 vS��

RD
1S � A2

D� 1
3

J�vI 2 vS�1 J�vS�1 2J�vI 1 vS��
(1.28b)

RCSA
1I � 4A2

CSA�I�B
2
0J�vI� RCSA

1S � 4A2
CSA�S�B

2
0J�vS�
�1:28c�

rD � A2
D�2J�vI 1 vS�2 1

3
J�vI 2 vS�� �1:28d�

rD;CSA�I� � 4ADACSA�I�P2�cos uD;CSA�I��B0J�vI�

rD;CSA�S� � 4ADACSA�S�P2�cos uD;CSA�S��B0J�vS�
(1.28e)

l � A2
D�J�vI�1 J�vS��: �1:28f�

Here AD, ACSA(I) and ACSA(S) are given by Eqs. (1.22b)

and (1.24d). The cross-relaxation Iz ! 2IzSz; 2IzSz !
Iz is caused by DD±CSA I cross-correlation. The

cross-relaxation Sz ! 2IzSz; 2IzSz ! Sz is due to

DD±CSA S cross-correlation. The cross-relaxation

Iz ! Sz and Sz ! Iz; referred to as the nuclear Over-

hauser effect, is the consequence of dipole±dipole

interactions between spins I and S. It can be shown

that the steady-state magnetisation for spin S under

the condition of saturation of spin I (i.e. at kIzl�t� ; 0)

is given by:

lim
t!1 �kSzl�t�2 Sz0� � rD

RD
1S 1 RCSA

1S

Iz0

� gI

gS

rD

RD
1S 1 RCSA

1S

Sz0 �1:29a�
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Table 1

Relaxation super-operators for a two-spin 1/2 system (Here it is assumed that B0 is directed along the z-axis; AD, ACSA(I) and ACSA(S) are given

by Eqs. (1.22b) and (1.24d); the auto and cross-correlation spectral density functions JD�v�;JCSA�I��v�; JCSA�S��v�; JD;CSA�I��v�;
JD;CSA�S��v�; JCSA�I�;CSA�S��v� are the cosine Fourier transforms of the correlation functions (Eqs. (1.13a), (1.13b)), composed from the lattice

random functions Fm(t) for the corresponding interactions (Fm(t) are given by Eq. (1.19b) for dipolar interactions and by Eq. (1.24e) for CSA

interactions)

Dipolar relaxation

Ĝ D�Q� � 8
3

A2
DJD�0��IzSz�IzSz;Q��1 1

6
A2

DJD�vI 2 vS���I2S1�I1S2;Q��1 �I1S2�I2S1;Q���1 A2
DJD�vI���I2Sz�I1Sz;Q��1

�I1Sz�I2Sz;Q���1 A2
DJD�vS���IzS2�IzS1;Q��1 �IzS1�IzS2;Q���1 A2

DJD�vI 1 vS���I2S2�I1S1;Q��1 �I1S1�I2S2;Q���
CSA relaxation of spin I

Ĝ CSA�I��Q� � 8
3

A2
CSA�I�B

2
0JCSA�I��0��Iz�Iz;Q��1 A2

CSA�I�B
2
0JCSA�I��vI ���I2�I1;Q��1 �I1�I2;Q���

CSA relaxation of spin S

Ĝ CSA�S��Q� � 8
3

A2
CSA�S�B

2
0JCSA�S��0��Sz�Sz;Q��1 A2

CSA�S�B
2
0JCSA�S��vS���S2�S1;Q��1 �S1�S2;Q���

DD±CSA I cross-correlation

Ĝ D;CSA�I��Q� � 8
3

ADACSA�I�B0JD;CSA�I��0���Iz�IzSz;Q��1 �IzSz�Iz;Q���1 ADACSA�I�B0JD;CSA�I��vI ���I2�I1Sz;Q��1 �I1Sz�I2;Q��1
�I1�I2Sz;Q��1 �I2Sz�I1;Q���
DD±CSA S cross-correlation

Ĝ D;CSA�S��Q� � 8
3

ADACSA�S�B0JD;CSA�S��0���Sz�IzSz;Q��1 �IzSz�Sz;Q���1 ADACSA�S�B0JD;CSA�S��vS���S2�IzS1;Q��1 �IzS1�S2;Q��1

�S1�IzS2;Q��1 �IzS2�S1;Q���
CSA I±CSA S cross-correlation

Ĝ CSA�I�;CSA�S��Q� � 8
3

ACSA�I�ACSA�S�B
2
0JCSA�I�;CSA�S��0���Sz�Iz;Q��1 �Iz�Sz;Q���



lim
t!1

kSzl�t�
Sz0

� 1 1
gI

gS

rD

RD
1S 1 RCSA

1S

; �1:29b�

where the quantity given by Eq. (1.29b) is referred to

as the value of the nuclear Overhauser effect Ð NOE

(the steady state NOE for the spin I can be written by

analogy to Eqs. (1.29a) and (1.29b), where one should

exchange the symbols S and I).

The relaxation in the groups (Ix, 2IxSz), (Sx, 2IzSx),

(Iy, 2IySz), (Sy, 2IzSy) (known as transverse) is

described by:

d

dt

kIxlI

k2IxSzl
I

" #

� 2
RD

2I 1 RCSA
2I hD;CSA�I�

hD;CSA�I� RD
2I 1 RCSA

2I 1 RCSA
1S 2 mI

24 35
� kIxlI

k2IxSzl
I

" #
(1.30a)

d

dt

kSxlI

k2IzSxlI

" #

� 2
RD

2S 1 RCSA
2S hD;CSA�S�

hD;CSA�S� RD
2S 1 RCSA

2S 1 RCSA
1I 2 mS

24 35
� kIxlI

k2IzSxlI

" #
;

where

RD
2I � A2

D� 2
3

J�0�1 1
6

J�vI 2 vS�1 1
2

J�vI�1 J�vS�
1 J�vI 1 vS�� (1.30b)

RD
2S � A2

D� 2
3

J�0�1 1
6

J�vI 2 vS�1 J�vI�1 1
2

J�vS�
1 J�vI 1 vS��

RCSA
2I � A2

CSA�I�B
2
0� 8

3
J�0�1 2J�vI�� �1:30c�

RCSA
2S � A2

CSA�S�B
2
0� 8

3
J�0�1 2J�vS��

hD;CSA�I� � ADACSA�I�P2�cos uD;CSA�I��B0� 8
3

J�0�1 2J�vI��

hD;CSA�S� � ADACSA�S�P2�cos uD;CSA�S��B0� 8
3

J�0�1 2J�vS��

(1.30d)

mI � A2
DJ�vS� mS � A2

DJ�vI�: �1:30e�
Here AD, ACSA(I) and ACSA(S) are given by Eqs. (1.22b)

and (1.24d), RCSA
1I and RCSA

1S are given by Eq. (1.28c).

The cross-relaxation Ix ! 2IxSz; 2IxSx ! Ixis caused

by DD±CSA I cross-correlation. The cross-relaxation

Sx ! 2IzSx; 2IxSx ! Sx is due to DD±CSA S cross-

correlation. The terms m I and m S are related with the

cross-relaxation rates between doublet components

for spin I and S, respectively (see below).

The relaxation in groups (2IxSx, 2IySy) and (2IxSy,

2IySx) composed of double spin operators, which are

linear combinations of zero-quantum I1S2, I2S1 and

double-quantum I1S1, I2S2 coherences, is described

by:

d

dt

k2IxSxlI

k2IySylI

24 35

� 2
mmq 1 RCSA

2I 1 RCSA
2S 2hmq 2 hCSA�I�;CSA�S�

2hmq 2 hCSA�I�;CSA�S� mmq 1 RCSA
2I 1 RCSA

2S

24 35

� k2IxSxlI

k2IySylI

24 35 (1.31a)

d

dt

k2IxSylI

k2IySxlI

24 35

� 2
mmq 1 RCSA

2I 1 RCSA
2S hmq 1 hCSA�I�;CSA�S�

hmq 1 hCSA�I�;CSA�S� mmq 1 RCSA
2I 1 RCSA

2S

24 35

�
k2IxSylI

k2IySxlI

24 35 where;

mmq � A2
D� 1

6
J�vI 2 vS�1 1

2
J�vI�1 1

2
J�vS�

1 J�vI 1 vS�� �1:31b�
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hmq � A2
D�J�vI 1 vS�2 1

6
J�vI 2 vS�� � 1

2
rD

�1:31c�

hCSA�I�;CSA�S� � 16
3

ACSA�I�ACSA�S�P2�uCSA�I�;CSA�S��J�0�:
�1:31d�

Here AD, ACSA(I) and ACSA(S) are given by Eqs. (1.22b)

and (1.24d), RCSA
1I and RCSA

1S are given by Eq. (1.28c),

rD is given by Eq. (1.28d). The cross-relaxation term

hCSA(I),CSA(S) in Eq. (1.31d) is caused by CSA I±CSA S
cross-correlation. For the analysis of the relaxation in

the �2IxSx; 2IySy� and �2IxSy; 2IySx� groups it is conve-

nient to use the shift instead of the Cartesian product

operators. The evolution of the mean values of the

zero-quantum I1S2, I2S1 and double-quantum I1S1,

I2S2 coherences are mono-exponential decays with

the rate constants Rdq and Rzq, respectively:

d

dt
kI1S1lI � 2RdqkI1S1lI

d

dt
kI2S2lI � 2RdqkI2S2lI

�1:32a�

d

dt
kI1S2lI � 2RzqkI1S2lI

d

dt
kI2S1lI � 2RzqkI2S1lI

;

where

Rdq � RCSA
2I 1 RCSA

2S 1 mmq 1 hmq 1 hCSA�I�;CSA�S�;
�1:32b�

Rzq � RCSA
2I 1 RCSA

2S 1 mmq 2 hmq 2 hCSA�I�;CSA�S�:
�1:32c�

Here RCSA
1I ; RCSA

1S are given by Eq. (1.28c), mmq, hmq,

hCSA(I),CSA(S) are given by Eqs. (1.31b)±(1.31d).

The existence of weak scalar coupling between

spins I and S, described by the Hamiltonian Hs �
JIzSz; gives rise for each spin to a doublet of resonance

lines with frequencies vI ^ J=2 for spin I and vS ^

J=2 for spin S. It was noted long ago [18] that the

consequence of DD±CSA I and DD±CSA S cross-

correlation is a difference in the line-width for the

doublet components. For the consideration of this

effect, it is convenient to use single-transition basis

operators I�1�^ � I^�1=2 1 Sz�; I�2�^ � I^�1=2 2 Sz�;

S�1�^ � I^�1=2 1 Iz�; S�2�^ � S^�1=2 2 Iz� (see [15]). In

terms of these operators the differential equations for

transverse relaxation (see Eq. (1.30a)) in a system

with scalar interactions are written as:

d

dt

kI�1�^ lI

kI�2�^ lI

" #
� i

J

2

7kI�1�^ lI

7kI�2�^ lI

" #

2
RI�1� jI

jI RI�2�

" #
kI�1�^ lI

kI�2�^ lI

" #
�1:33a�

d

dt

kS�1�^ lI

kS�2�^ lI

" #
� i

J

2

7kS�1�^ lI

7kS�2�^ lI

" #

2
RS�1� jS

jS RS�2�

" #
kS�1�^ lI

kS�2�^ lI

" #
;

where

RI�1� � RD
2I 1 RCSA

2I 1
RCSA

1S 2 mI

2
1 hD;CSA�I�

RS�1� � RD
2S 1 RCSA

2S 1
RCSA

1I 2 mS

2
1 hD;CSA�S�

�1:33b�

RI�2� � RD
2I 1 RCSA

2I 1
RCSA

1S 2 mI

2
2 hD;CSA�I�

RS�2� � RD
2S 1 RCSA

2S 1
RCSA

1I 2 mS

2
2 hD;CSA�S�

�1:33c�

jI � mI 2 RCSA
1S

2
jS � mS 2 RCSA

1I

2
: �1:33d�

Here RCSA
1I ; RCSA

1S are given by Eq. (1.28c), RD
2I; RD

2S;

RCSA
2I ; RCSA

2S ; hD,CSA(I), hD,CSA(S), mI and mS are given by

Eqs. (1.30a)±(1.30e), j I and j S denote the rates of

cross-relaxation between doublet components of

spin I and S, respectively (if spin I relaxation due to

CSA mechanism is negligible the cross-relaxation rate

j S is equal to mS/2 and vice versa). The relaxation rates

RI(1), RI(2), RS(1), and RS(2), determine the line-width for

the doublet components of spin I and S, respectively.

Differential line broadening for the doublet

components, caused by DD±CSA cross-correlation,

gives rise to the development of heteronuclear NMR
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experiments based on the TROSY (transverse relaxa-

tion optimised spectroscopy) principle. TROSY

experiments, which make use of the narrowest spec-

tral component for the transfer and detection, have

been proposed for protein backbone 15N± 1H and

aromatic side-chain 13C± 1H moieties [19,20].

Narrow line-widths in 1H± 15N TROSY spectra are

obtained because of nearly complete compensation

of transverse relaxation at magnetic ®elds of 21.0±

23.0 T (see Eqs. (1.33b) and (1.33c)). The compen-

sation effect for the relaxation of zero-quantum

coherence (see Eq. (1.32c)) due to CSA±CSA

cross-correlation might also be used to obtain

narrow line-widths as it is proposed in the ZQ-

(15N,1H)-TROSY pulse scheme [21].

The measurement of cross-correlated cross-relaxa-

tion rates provide the means for estimating the para-

meters governing relaxation in 1H± 15N two-spin

system. In particular, DD±CSA 15N cross-correlated

relaxation rates have been used for the characterisa-

tion of the shielding anisotropy tensor for the

backbone 15N nuclei [17,22,23]. Measurements of

CSA±CSA cross-correlated relaxation for backbone
1H± 15N and 15N± 13CO systems have also been

reported [24±26].

1.2.4. Relaxation under off-resonance RF irradiation

Measurements of the relaxation rates in the

presence of transverse spin-locking radio-frequency

(RF) ®eld, applied with the carrier in the vicinity of

spin I and/or S resonance, provide additional informa-

tion about molecular motions (for a recent review see

Ref. [27]). The laboratory frame Hamiltonian for a

two-spin 1/2 system subjected to a RF spin-locking

®eld applied along the x-axis with the carrier frequen-

cies vI 2 DvI and vS 2 DvS and amplitudes v 1I and

v 1S for spins I and S, respectively, is given by:

H�t� � HZ 1 HRF�t�1 H1�t�; �1:34a�

HRF�t� �v1I�Ix cos�vI 2 DvI�t 1 Iy sin�vI 2 DvI�t�
1 v1S�Sx cos�vS 2 DvS�t 1 Sy sin�vS 2 DvS�t�;

�1:34b�
where HZ is the Zeeman Hamiltonian given by Eq.

(1.20), H1(t) is the Hamiltonian of random perturba-

tion resulting in relaxation (Eqs. (1.18) and (1.23)).

The Hamiltonians HZ and HRF(t) vanish in the

interaction representation given by the unitary trans-

formation:

U � UIUS; �1:35a�
where

UI � eiveI Izt eiuI Iy ei�vI 2DvI �Izt;

US � eiveSSzt eiuSSy ei�vS2DvS�Szt;

�1:35b�

uI � arctan
v1I

DvI

; uS � arctan
v1S

DvS

; �1:35c�

veI �
��������������
v2

1I 1 Dv2
I

q
; veS �

��������������
v2

1S 1 Dv2
S

q
: �1:35d�

This interaction representation de®nes the frame rotat-

ing with the frequencies v eI and v eS about the effec-

tive ®eld tilted with respect to the permanent magnetic

®eld B0 (directed along the z-axis) by angles u I and u S

for spins I and S, respectively. The effective ®eld is

directed in the xz-plane of the frame, rotating about

the z-axis of the laboratory frame with frequencies

vI 2 DvI and vS 2 DvS for spins I and S, respec-

tively. The interaction representation given by Eqs.

(1.35a)±(1.35d) thus corresponds to a doubly rotating

frame.

Let us consider the relaxation of magnetisation

locked along the effective ®eld (which is different

for spins I and S) in the doubly rotating frame, i.e.

the relaxation for I 0z � Iz cos uI 1 Ix sin uI ; S 0z �
Sz cos uS 1 Sx sin uS and 2I 0zS

0
z; where Ix and Sx are

given in the frame rotating about the z-axis with

frequencies vI 2 DvI and vS 2 DvS for spins I and

S, respectively. The master equation for mean values

of I 0z; S 0z and 2I 0zS
0
z (Eqs. (1.16a) and (1.16b)) is

derived using the expressions for the DD and CSA

Hamiltonians H1(t) (Eqs. (1.18) and (1.23)), written

in the doubly rotating frame (Eqs. (1.35a)±(1.35d)) in

terms of spin operators T n
m and the frequencies vn

m (see

Eq. (1.10)). The derivation of the relaxation rates in

the doubly rotating frame is analogous to that in the

previous section and will not be repeated here. The

expressions for relaxation rates in the presence of an

RF spin-locking ®eld depend on the values of spectral

density functions at linear combinations of v I, v S, v eI

and v eS. However, due to the correlation time t c of

random processes causing DD and CSA relaxation

being suf®ciently short that veItc p 1; veStc p 1;
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the frequencies v eI and v eS in the expressions for

relaxation rates can be safely set to zero. The master

equation for longitudinal relaxation in the doubly

rotating frame is then written in a form analogous to

Eq. (1.28a) [27±29]:

d

dt

kI 0zl 2 I 0z0

kS 0zl 2 S 0z0

k2I 0zS
0
zl

2664
3775

� 2

RD
1r;I 1 RCSA

1r;I rr;D rr;D;CSA�I�

rr;D RD
1r;S 1 RCSA

1r;S rr;D;CSA�S�

rr;D;CSA�I� rr;D;CSA�S� RCSA
1r;I 1 RCSA

1r;S 1 lr

26664
37775

�
kI 0zl 2 I 0z0

kS 0zl 2 S 0z0

k2I 0zS
0
zl

2664
3775; (1.36a)

where I 0z0 and S 0z0 are the values of steady-state

magnetisation in the doubly rotating frame depending

on the RF irradiation conditions and on the relaxation

rates [27,30]; the following relationships hold here for

rotating-frame auto-relaxation rates:

RD
1r;I � RD

1Ic
2
I 1 RD

2Is
2
I RCSA

1r;I � RCSA
1I c2

I 1 RCSA
2I s2

I

�1:36b�

RD
1r;S � RD

1Sc2
S 1 RD

2Ss2
S RCSA

1r;S � RCSA
1S c2

S 1 RCSA
2S s2

S

lr � A2
D� 2

3
�s2

I c2
S 1 c2

I s2
S�J�0�1 1

2
��1 1 c2

I �c2
S

1 s2
I s2

S�J�vI�1 1
2
��1 1 c2

S�c2
I 1 s2

I s2
S�J�vS�

1 1
2
��1 1 c2

I �s2
S 1 �1 1 c2

S�s2
I �J�vI 1 vS�

1 1
12
��1 1 c2

I �s2
S 1 �1 1 c2

S�s2
I �J�vI 2 vS��;

where cI � cos uI ; cS � cos uS; sI � sin uI ; sS �
sin uS; RD

1I and RCSA
1I are given by Eqs. (1.28b)

and (1.28c), RD
2I and RCSA

2I are given by Eqs. (1.30b)

and (1.30c); the rotating-frame cross-relaxation rates

are given by:

rr;D � cIcSrD

rr;D;CSA�I� � cS�rD;CSA�I�c
2
I 1 hD;CSA�I�s

2
I � �1:36c�

rr;D;CSA�S� � cI�rD;CSA�S�c
2
S 1 hD;CSA�S�s

2
S�;

where rD is given by Eq. (1.28d), rD,CSA(S) and rD,CSA(I)

are given by Eq. (1.28e), hD,CSA(S) and hD,CSA(I) are

given by Eq. (1.30d). It should be noted that in relax-

ation studies of scalar coupled systems with RF

irradiation applied for both spins one should carefully

avoid the conditions where Hartmann±Hahn coher-

ence transfer takes place (see, e.g. [10]).

1.3. Conformational (chemical) exchange

It is well known that chemical exchange of a

nucleus between sites in different molecules or intra-

molecular conformational exchange modulating

isotropic part of the chemical shielding tensor

(chemical shift) of the nucleus can contribute to the

measured relaxation rates. If the exchange is fast, i.e.

if the exchange rate constants kex are much higher than

the differences between the Larmor frequencies of the

nucleus in the different states one should observe a

single resonance in the NMR spectra. In view of

relaxation measurements this resonance provides

cumulative information on relaxation rates in different

states and characteristics of the exchange processes. If

the exchange is slow one can study the relaxation for

resonances corresponding to different states. Both fast

and slow conformational exchange can be accounted

for using the modi®ed Bloch equations [31±33]. Fast

exchange can be also treated from a quantum mechan-

ical point of view (see [34±36]). In this section we

present a quantum mechanical consideration of fast

exchange and list some useful equations describing

the effect of conformational (chemical) exchange on

relaxation rates measured in spin-echo experiments.

1.3.1. Fast exchange from a quantum mechanical

point of view

Let us consider fast exchange of spin I between

states with different chemical shifts as a mechanism

of relaxation in terms of the semi-classical theory of

relaxation (Section 1.1). In a static magnetic ®eld B0

the Hamiltonian for spin I participating in an exchange

process is represented as a sum of a time independent

part H0 and a random perturbation H1(t) [35]:

H0 � 2
X

i

pigI�1 2 V i��B0´I�; �1:37a�

H1�t� � 2
X

i

gI� fi�t�2 pi��1 2 V i��B0´I�; �1:37b�
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where the index i runs over the number of conforma-

tional states, V i is the value of the chemical shift of the

nucleus in the ith state, pi is the population of ith state,

fi(t) are random functions that have the property fi�t� �
1 if the nucleus is in ith state and fi�t� � 0 otherwise.

From the de®nition of H1(t) it is clear that kH1�t�l � 0:

For the simplest case of exchange between two states A

and B with populations pA and pB and a chemical shift

difference Dex�I� � VA 2 VB the Hamiltonian H1(t) is

given by:

H1�t� � � fA�t�2 pA�gI�B0´I�Dex�I�

� 2� fB�t�2 pB�gI�B0´I�Dex�I�; �1:37c�
where fA�t� � 1 2 fB�t�: H1(t) can be written in a form

similar to Eq. (1.8) in terms of random functions Fm(t)

and components Tm of an irreducible tensor operator of

rank 0 (see Appendix A). For a two-state exchange Tm

and Fm(t) are given by:

T0 � Aex�I��B0´I� � Aex�I��BzIz 1 1
2
�B1I2 1 B2I1��

� Aex�I�B0Iz; (1.38a)

where

Aex�I� � ������
pApB

p
gIDex�I�; �1:38b�

F0�t� � fA�t�2 pA������
pApB
p � 2

fB�t�2 pB������
pApB
p ; �1:38c�

F0(t) is normalised such that the correlation function

C�t� � kF0�0�F0�t�l (Eqs. (1.13a), (1.13b)) is equal to 1

at t � 0;B0 is directed along the z-axis. Transformation

of Eqs. (1.38a)±(1.38c) to the interaction representa-

tion provides Tn
m and vn

m (Eq. (1.10)) required for the

calculation of relaxation rates:

�T0�I � Aex�I�B0Iz

T0
0
;v0

0
�0

: �1:39�

For a two-spin 1/2 system with exchange between

states with different chemical shifts, the relaxation

super-operator Ĝ �Q� (Eq. (1.26); Table 1) in the

master equation (Eqs. (1.16a) and (1.16b)) includes

three additional terms:

Ĝ ex�I��Q� � A2
ex�I�B

2
0Jex�I��0��Iz�Iz;Q�� �1:40a�

Ĝ ex�S��Q� � A2
ex�S�B

2
0Jex�S��0��Sz�Sz;Q�� �1:40b�

Ĝ ex�I�;ex�S��Q� � Aex�I�Aex�S�B
2
0Jex�I�;ex�S��0���Sz�Iz;Q��

1 �Iz�Sz;Q���; (1.40c)

where Ĝ ex�I��Q� and Ĝ ex�S� are responsible for relaxa-

tion due to the exchange mechanism for spins I and S,

respectively; Ĝ ex�I�;ex�S��Q� is due to cross-correlation

between the exchanges of spins I and S [26]. The

spectral density functions Jex(I)(v ), Jex(S)(v ) and

Jex(I),ex(S)(v ) are the cosine Fourier transforms of the

corresponding auto- and cross-correlation functions

(Eq. (1.13a)), composed of the random functions

F0(t) for the exchanges of spins I and S. Using Eq.

(1.38c) for F0(t) one can show that for the exchange

between two states A and B, occurring simultaneously

for spins I and S with the rate constant kex �
kA!B=pB � kB!A=pA; the spectral density functions in

Eqs. (1.40a)±(1.40c) are given by:

Jex�v� � Jex�I��v� � Jex�S��v� � Jex�I�;ex�S��v�

� kex

k2
ex 1 v2

: �1:41�

Substituting shift-basis operators for a two-spin

1/2 system into Eqs. (1.40a)±(1.40c) one can

show that fast conformational exchange does not

contribute to the relaxation of kIzl, kSzl and

k2IzSzl; contributes as Rex(I) and Rex(S) to the auto-

relaxation rates of kI^l, k2I^Szl and kS^l, k2IzS^l,
respectively; and contributes as Rex(I) 1 Rex(S) 2
h ex(I),ex(S) and Rex(I) 1 Rex(S) 1 h ex(I),ex(S) to auto-

relaxation rates of zero-quantum k2I1S2l, k2I2S1l
and double-quantum k2I1S1l, k2I2S2l coherences,

respectively. The relaxation rates Rex(I), Rex(S) and

h ex(I),ex(S) are given by:

Rex�I� � A2
ex�I�B

2
0Jex�I��0�; Rex�S� � A2

ex�S�B
2
0Jex�S��0�;

�1:42�
hex�I�;ex�S� � 2Aex�I�Aex�S�B

2
0Jex�I�;ex�S��0�;

where Aex(I), Aex(S) are given by Eq. (1.38b) and

Jex(I)(v ), Jex(S)(v ), Jex(I),ex(S)(v) are given by Eq.

(1.41), provided that the exchange occurs between

the two states A and B simultaneously for spins I
and S. Eq. (1.42) characterises the exchange under

free precession.
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Let us now consider the exchange-mediated relaxa-

tion of magnetisation locked by the transverse spin-

locking RF ®eld with amplitude v 1I and the carrier

frequency vI 2 DvI along the effective ®eld in a

doubly rotating frame (see Section 1.2.4), i.e. the

relaxation for I 0z � Iz cos uI 1 Ix sin uI ; where Ix is

given in the frame rotating about the z-axis with

frequency vI 2 DvI : The relaxation rate for kI 0zl is

derived using the expression for the conformational

exchange Hamiltonian H1(t) (Eq. (1.37b) and (1.37c)),

written in the doubly rotating frame (Eqs. (1.35a)±

(1.35d)) in terms of spin operators T n
m and frequencies

vn
m (see Eq. (1.10)). In contrast to DD and CSA

relaxation (Section 1.2), for the exchange-mediated

relaxation the condition veItex � veI =kex p 1 may

be violated and the relaxation rate Rr ,ex(I) for the

mean value of I 0z appears to be dependent on v eI

(Eq. (1.35d)). The rate Rr ,ex(I) for exchange-mediated

relaxation of kI 0zl is given by:

Rr;ex�I� � A2
ex�I�B

2
0sin2uIJex�I��veI�; �1:43�

where v eI and u I are given by Eqs. (1.35c) and

(1.35d), Aex(I) is given by Eq. (1.38b) and Jex(I)(v ) is

given by Eq. (1.41), provided that the exchange

occurs between two states A and B.

It is worth noting that the expressions for relaxation

rates due to conformational exchange derived here

(Eqs. (1.42) and (1.43)) are valid under the assump-

tions of semi-classical theory of relaxation (Section

1.1), namely, if the conditions v2
ID

2
ex�I�=k

2
ex p 1;

v2
SD

2
ex�S�=k

2
ex p 1 hold.

1.3.2. Effect of exchange on spin-echo experiments

Conformational exchange is known to affect

transverse relaxation rates measured in spin-echo

experiments (Section 1.4). In particular, the depen-

dence of the transverse relaxation rate on the separa-

tion 2d between the 1808 pulses of the CPMG

sequence [37,38] is often used for characterisation

of microsecond±millisecond exchange. The ampli-

tudes of CPMG echoes for nucleus I, exchanging

between n states with different chemical shifts, are

given by the sum of n exponential terms [39±42].

For fast exchange the actual decay of the amplitudes

of CPMG echoes is well approximated by one expo-

nent depending on the apparent rate constant Rp
2�I�:

Below we list several analytic expressions for Rp
2�I�

without describing the cumbersome details of their

derivation. These expressions make it possible to

extract the parameters of the exchange from trans-

verse relaxation rates obtained using CPMG

sequence. Here we assume that the exchange is

fast, whereas the exchange times tex � 1=kex are

much slower than the correlation times t c of random

processes causing other relaxation mechanisms (e.g.

DD and CSA).

Luz and Meiboom [43] were the ®rst to derive an

analytic expression for the apparent rate constant Rp
2�I�

measured using the CPMG sequence for the nucleus

exchanging between states with different chemical

shifts. For a two-state exchange this rate is given by:

Rp
2�I� � R2�I� 1 Rex; �1:44a�

Rex �
pApBD

2
ex�I�v

2
I

kex

1 2
tanh�kexd�

kexd

� �
; �1:44b�

where pA and pB are populations of the states, Dex�I� �
VA�I� 2 VB�I� is the chemical shift difference between

the states, kex � kA!B=pB � kB!A=pA is the rate

constant for exchange process, d is the delay of the

d -1808-d CPMG block, R2(I) is the transverse relaxa-

tion rate in the absence of the exchange assumed to be

the same in states A and B. Another useful expression

for Rp
2�I� is given by Bloom et al. [39] (see also Refs.

[44,45]):

Rp
2�I� � R2�I� 1 Rex; �1:45a�

where

Rex � kex

2
2

1

2d
sinh21 kex

j
sinh�dj�

� �
if k 2

ex , 4pApBD
2
ex�I�v

2
I

Rex � kex

2
2

1

2d
sinh21�kexd�

if k2
ex � 4pApBD

2
ex�I�v

2
I

Rex � kex

2
2

1

2d
sinh21 kex

j
sin�dj�

� �
if k 2

ex . 4pApBD
2
ex�I�v

2
I

�1:45b�

j �
��������������������������
uk 2

ex 2 4pApBD
2
ex�I�v2

I u
q

: �1:45c�
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Note that Eqs. (1.45a)±(1.45c) was validated only for

the case of equally populated states: pA � pB � 0:5: If

the exchange occurs between the two states with

different relaxation rates R2A(I) and R2B(I) it is conve-

nient to use the following expression for Rp
2�I�

[36,42,46]:

Rp
2�I� � 1

2

 
R2A�I� 1 R2B�I� 1 kex

2
1

2d
cosh21�D1 cosh h1 2 D2 cosh h2�

!
;

�1:46a�
where

D^ � 1

2

c 1 2D 2
ex�I�v

2
I����������

c 2 1 z2
p ^ 1

 !

h^ �
��
2
p

d

����������������������������
c 2 1 z2

q
^ c

r �1:46b�

c � �R2A�I� 2 R2B�I� 2 pAkex 1 pBkex�2

2 D2
ex�I�v

2
I 1 4pApBk2

ex

z � 2Dex�I�vI�R2A�I� 2 R2B�I� 2 pAkex 1 pBkex�:

1.4. Experimental aspects of relaxation measurements

Protein studies often focus on the relaxation of the

backbone 15N and 13C nuclei. The relaxation of the

nitrogen and carbon nuclei in 15N± 1H and 13Ca± 1H

systems occurs mostly due to the dipolar interactions

with the covalently bound proton and by the CSA

mechanism (Here and below we will refer to the
15N, 13C nuclei as S, and 1H as I.) The protons in

these systems relax also by to the dipolar interactions

with remote protons in the protein, which hinder an

unambiguous interpretation of the relaxation for the

coherences involving the proton operators. Therefore,

a commonly used set of experimental relaxation data

for 15N± 1H or 13Ca± 1H systems of the protein back-

bone includes only longitudinal (R1) and transverse

(R2) relaxation rates for 15N or 13Ca nuclei and the

value of the heteronuclear Overhauser effect (NOE)

(Eq. (1.29b)).

For the backbone 15N nuclei the contribution from

other mechanisms of relaxation is less than 1±2%.

Thus, the formulae derived in Section 1.2 for

longitudinal (Eqs. (1.28b) and (1.28c)) and transverse

(Eqs. (1.30b) and (1.30c)) relaxation may be applied

for the backbone 15N nuclei without any modi®cation,

provided that the 15N nuclei considered are not

affected by conformational exchange in the micro-

second±millisecond time-scale. In an analysis of
13Ca relaxation in uniformly 13C-enriched proteins

the relaxation due to dipolar interactions of 13Ca

with the adjacent 13C should also be taken into

account. In addition, special care should be taken to

avoid the effects of scalar 13C± 13C coupling (see

[47,48]).

Below we focus on the relaxation measurements for

the backbone 15N nuclei and discuss the conventional

heteronuclear relaxation experiments.

1.4.1. The heteronuclear NMR relaxation

measurements

The experimental schemes for the measurements of
15N R1, R2 and 15N{1H} NOE are well documented

[49±51]. Numerous experiments for measurement of

the relaxation rates of the other coherences, i.e. the

anti-phase, longitudinal two-spin order, zero- and

double quantum coherences, and cross-correlated

cross-relaxation rates have also been described (see,

e.g. [17,24,52±55]). Here we brie¯y discuss the

common principles of the heteronuclear relaxation

experiments. For a more comprehensive discussion

on the basic principles of modern heteronuclear

multidimensional NMR spectroscopy see Chapter 7

in Ref. [8].

The general scheme of 2D experiments for hetero-

nuclear relaxation measurements is shown in Fig. 1.

The scheme includes the following steps:

1. Preparation. The experiment starts from the proton

(spin I) magnetisation. This increases the sensi-

tivity of the experiment by a factor g I/g S in

comparison with experiments starting from

magnetisation of the heteronucleus (spin S). The

desirable coherence is created using magnetisation

transfer through scalar coupling, e.g. using an

INEPT transfer step [56].

2. Delay for the relaxation. This is a delay of variable

length T for auto- or cross-relaxation of the

selected coherence. Several spectra with different
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values of T are usually recorded. The desired auto-

or cross-relaxation rate is then obtained from the

dependence of the peak intensities in the spectra on

the value of the relaxation delay T. It is important

to ensure that only the selected auto- or cross-

relaxation process occurs during the relaxation

period T. Therefore, mixing of magnetisation

components due to unwanted cross-relaxation or

scalar coupling should be carefully avoided.

3. A t1 period is introduced in order to label the

residual coherence by the frequency of the hetero-

nucleus.

4. Reverse magnetisation transfer. Transfer of

magnetisation back to the proton. Detection on

protons enhances the sensitivity of the experiment

by the factor (g I /g S)
3/2. After the t1 period the

magnetisation in the rotating frame consists of

two orthogonal components weighted as cos(V S t1)

and sin(V S t1) (V S is the chemical shift of the

heteronucleus). Most of the relaxation experiments

include the detection of both components using the

`preservation of equivalent pathway' principle

(sensitivity enhancement) [57,58]. This increases

the sensitivity of the experiment by
��
2
p

in compar-

ison with the experiment using only one of the

components. The reverse magnetisation transfer

may also include gradient selection of a coherence

transfer pathway [59±61].

5. Detection. During this period the proton transverse

magnetisation is detected. Broadband decoupling

from the heteronucleus is commonly applied here

(for a review see [62]).

6. Delay between the scans. In the experiments for

relaxation rate measurements this delay should be

selected to obtain maximal sensitivity of the

experiment. In practice, a compromise between

complete recovery of the proton magnetisation

after the preceding scan and a maximum number

of scans collected per unit time should be

considered.

This scheme does not cover all available types of

relaxation experiments for the 15N± 1H two-spin

system. In particular, in heteronuclear NOE measure-

ments only two spectra are recorded starting from

equilibrium magnetisation of 15N and from steady-

state magnetisation of 15N under the condition of

proton saturation (see below).
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1.4.2. 15N R1, R2 and NOE experiments

The commonly used pulse sequences for measure-

ments of 15N R1, R2 and 15N{1H} NOE [51] are

presented in Fig. 2. A modi®cation of the 15N R1

experiment allowing off-resonance rotating-frame

relaxation measurements is also shown (see, e.g.

[63]).

The pulse ®eld gradients g1 in R1 and R2 experi-

ments defocus the initial 15N magnetisation, g3 in R1

and R2 and g5 in R1 experiments defocus the trans-

verse coherences when the desired magnetisation is of

the form 2IzSz and Sz, respectively. Equal gradients are

placed on both sides of the simultaneous 1808 1H/15N

pulses to reduce effects of pulse imperfection [64].

The gradient pulses g6 and g9 in R1, g5 and g8 in R2

and g1 and g4 in NOE experiments are used for the

selection of a coherence transfer pathway [59±61].

The length and strength of these gradients are adjusted

in such a manner that the ratio of areas of encoding

and decoding gradient pulses is equal to g S /g I.

The preservation of an equivalent pathway is

implemented in all experimental schemes [57,58]. In

particular, two different data sets are recorded with an

inverted sign of encoding gradients g6, g5 and g1 and

inverted phase f4, f3 and f6 in R1, R2 and NOE

experiments, respectively. Before the acquisition the

proton magnetisation in these two sets is given by

^Iy cos�Vst1�1 Ix sin�Vst1�: Sine and cosine ampli-

tude modulated signals, required for purely absorptive

line-shapes, are then generated by adding and

subtracting the recorded data sets.

1.4.2.1. R1 measurements. In 15N R1 experiments

(Fig. 2a) the magnetisation at the beginning of

the relaxation period T corresponds to ^Sz. During

the relaxation delay T the 15N magnetisation

approaches its steady-state value, i.e. the time

dependence of magnetisation is given by a three-

parameter exponential decay kIzl�t� � kIzl�1�1
kIzl�0� exp�2R1T�: The contribution of steady-state
15N magnetisation is cancelled by alternation of the

direction of the 15N magnetisation at the beginning of

the relaxation period T (alternation of phase f1) with

simultaneous inversion of the receiver phase (see

[65]). The dependence of the resulting peak intensity

in spectra with different values of T is thus given by

A � A1 exp�2R1T�:
The unwanted cross-relaxation Sz ! 2IzSz caused

by cross-correlation between the DD and CSA relaxa-

tion mechanisms during relaxation period T is

suppressed either by repeating 1808 1H pulses or by

broadband 1H decoupling [66].

1.4.2.2. R2 measurements R2 (CPMG) and R1r experi-

ments. Transverse relaxation rates R2 can be measured

using the CPMG technique [37,38]. In the R2 (CPMG)

experiment (Fig. 2b), at the beginning of the relaxa-

tion period T, the magnetisation is of the form ^Sx.

During the relaxation period T the effects of hetero-

nuclear scalar coupling, ®eld inhomogeneity and

micro-millisecond conformational exchange are

suppressed by the CPMG sequence, comprising the

repeating 15N 1808(x) pulses separated by a delay 2d .

Because of the scalar coupling between I and S the

apparent transverse relaxation rate R2 of spin S,

measured in the CPMG experiments, is a superposi-

tion of the relaxation rates of inphase Sx and anti±

phase 2IzSx coherences [67]:

R2 � 1

2
RSx

1 1
sin a

a

� �
1 R2IzSx

1 2
sin a

a

� �� �
�1:47�

where a � 2pJd; J is the scalar coupling constant

(J < 90 Hz for amide NHs), the relaxation rates RSx

and R2IzSx
are given by Eqs. (1.30a)±(1.30e). Thus, in

R2 (CPMG) experiments the condition 2pJd p 1

should hold (i.e. d , 0:5 2 0:7 ms should be used).

The unwanted cross-relaxation Sx;y ! 2IzSx;y due to

cross-correlation between the DD and CSA S relaxa-

tion mechanisms during the relaxation period T is

suppressed by 1808 1H pulses corresponding to even

CPMG echoes [67]. Since the transverse magnetisa-

tion approaches zero at T!1, the dependence of

peak intensities in the spectra with different values

of T is given by a two-parameter exponential decay

A � A1exp�2R2T�:
It has been reported recently [68,69] that off-

resonance effects stemming from the ®nite length of

the 1808 pulses in a CPMG pulse train affect the

measured R2 (CPMG) rates. These effects can be

neglected only if the RF pulse ®eld strength v 1 (in

frequency units) substantially exceeds the spectral

width. In practice this condition holds neither for
15N nor for 13C R2 measurements. Substantial errors

in R2 are expected if the spectral width is of the same

order as v 1. It was shown [68] that after 2n repetitions
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of the d -1808(x)-d CPMG block the magnetisation is

not aligned along the x-axis of the rotating frame, but

rotates by an angle 2nF about an effective axis in the

xz-plane of the rotating frame tilted versus the x-axis

by an angle Q (Fig. 3). The angles F and Q depend

on the resonance offset from the carrier 2Dv , the

inter-pulse delay 22d , and the ®eld strength of the

pulse 2v 1:

tan�Q� � cos�l� cot�u�1 sin�l� sin 21�u� cot�f=2�
�1:48�

cos�F=2� � cos�l� cos�f=2�2 sin�l� cos�u� sin�f=2�;
where l � Dvd; u � arctan�vI=Dv�; f �
kp

�����������������
1 1 �vl=Dv�2

p
; k is the factor accounting for

pulse imperfection (k � 1 for a perfectly calibrated

pulse). Offset-dependent oscillations with the

amplitude of sin2(Q ) are superimposed on the

exponential decay of experimentally observed x-

components of magnetisation. These oscillations

may result in a bias of the R2 values measured

by the CPMG technique from the actual ones.

Fortunately, for 15N spectral widths typical for

proteins the effect of oscillations can be safely

neglected [69]. However, the fact that magnetisa-

tion processes out of the xy-plane during the

CPMG sequence causes a contribution of R1 to

the apparent R2 relaxation rates measured in the

CPMG experiments. Korzhnev et al. [69] showed

that for typical CPMG settings this effect leads to

systematic (up to 10%) offset dependent underestima-

tions of 15N R2 for proteins of intermediate and large

size (Fig. 4). In some cases, the off-resonance effects

yield a dependence of the apparent 15N R2 (CPMG) on

the CPMG pulse repetition rate, which might be erro-

neously interpreted as a consequence of conforma-

tional exchange in the millisecond time-scale (see

Fig. 4).

A reasonable alternative to the R2 (CPMG)

measurements is provided by relaxation measurements
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Fig. 3. Schematic representation of the effective rotation of mag-

netization during the CPMG sequence. The angles Q and F are

given by Eq. (1.48). Reproduced from [69] with kind permission

from Kluwer Academic Press.

Fig. 2. Enhanced sensitivity pulse sequences [51] employing pulse ®eld gradients for the measurements of (a) 15N R1 (modi®cation allowing R1r

measurements is also shown), (b) 15N R2 and (c) 1H{15N} NOE with minimal saturation of water resonance. Narrow and wide bars in all

sequences indicate 90 and 1808 pulses, respectively. Unless indicated otherwise, all pulses are given along the x-direction. Darker gradient

pulses are used for selection of a coherence transfer pathway. In all experiments ta � 2:25 ms �,1=�4JNH��; tb � 2:75 ms �1=4JNH��:
Delays t 0b; t

00
b and t 000b are given by tB 1 2pw, tB 1 (2/p)pwn and tB 1 2pw 1 (2/p)pwn, respectively, where pw Ð 1H 908 pulse length,

pwn Ð 908 15N pulse length. (a) The phase cycling used in the R1 experiment is f1 � x; 2x; f2 � y; f3 � 2�x�; 2�y�; 2�2x�; 2�2y�; f4 � x;

receiver x, 2x, 2x, x. During the relaxation period T an even number of 1H 1808 pulses are applied with the delay d � 2:5 ms: For each

increment of t1 two one-dimensional spectra scans are collected with the inverted phase f4 and inverted sign of gradient g6. For R1r

measurements [63] 15N magnetisation before the relaxation period is rotated from the z-direction to the direction of the effective ®eld using

amplitude- and phase-modulated tanh/tan adiabatic pulses with the modulation functions v1�t� � v1tanh�10t=t� and Dv�t� �
Dv0�tan�tan21�50��1 2 t=t���=50 for amplitude and frequency, respectively (recommended adiabatic pulse length t is 6 and 4 ms for spin-

lock ®eld v1 of 1.0 and 2.0 kHz, respectively, at 14.1 T (600 MHz 1H) spectrometer; Dv0 � 30 kHz; sign of Dv 0 is selected according to

resonance offset from spin-lock carrier). The continuous wave RF irradiation period T, the pulse for rotation of magnetisation to the effective

®eld and the pulse for returning of magnetisation to the z-direction are implemented as one adiabatic pulse with the particular carrier frequency

(see Ref. [63]). (b) The phase cycling used in the R2 experiment is f1 � x; 2x; f2 � 2�x�; 2�y�; 2�2x�; 2�2y�; f3 � x; receiver x, 2x, 2x, x.

Delays d in CPMG can be varied from ,0.2 to 0.5±0.7 ms, d � d 0 2 pw: For each increment of t1 two spectra are collected with inverted phase

f3 and inverted sign of gradient g5. (c) The phase cycling used in the NOE experiment is f1 � y; f2 � x; y;2x;2y; f3 � x; receiver x, 2x.

For each increment of t1 two spectra are collected with inverted phase f3 and inverted sign of gradient g1. 1H saturation is achieved by the

application of 1H 1208 pulses spaced at 5 ms intervals for 3±5 s prior to the ®rst 15N pulse. Two data sets are recorded, one with and one without

proton saturation.



in the presence of a transverse spin-locking ®eld (off-

resonance R1r measurements) (for a recent review see

Ref. [27]). The R2 value may be obtained from R1r and

R1 data using Eq. (1.36b). A modi®cation of the 15N R1

pulse sequence allowing off-resonance R1r measure-

ments is shown in (Fig. 2a). Before the relaxation

period the 15N magnetisation can be aligned along

the effective ®eld using adiabatic rotations [63,70].

In the case of a small chemical shift dispersion the

method of chemical shift precession [71] may also be

used. It should be noted that the outcome of a R1r

experiment may be affected by inaccurate calibration

of the spin-lock ®eld strength, the spin-lock ®eld inho-

mogeneity and by power losses residing in a drop of

the ampli®er output after long RF irradiation [72].

1.4.2.3. 15N{1H} NOE measurements. The heteronuc-

lear NOE experiment starts from the magnetisation of

the heteronucleus S (Fig. 2c). Two different spectra are

recorded starting from: (i) equilibrium magnetisation
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Fig. 4. Relative difference for transverse relaxation times DT2=T2 < 2DR2=R2�DT2 � T2app 2 T2;DR2 � R2app 2 R2�; characterising the

deviation of the apparent relaxation rate R2app (CPMG) from the actual R2 value, versus the resonance offset from the carrier frequency of
15N 1808 pulses of the CPMG sequence (Hz). The apparent transverse relaxation rates R2app (CPMG) for the 15N nucleus with actual R1 �
1:66 Hz and R2 � 10:0 Hz were calculated using numerical modelling of the CPMG sequence [69]. Different CPMG settings were used: (a) 15N

908 pulse length Ð 70, 54 and 40 ms (curves from top to bottom), delay d of d-1808�x�-d CPMG block Ð 500 ms. (b) 15N 908 pulse length Ð

54 ms, d � 250; 300, 400 and 500 ms from top to bottom (e.g. at 1000 Hz offset). Reproduced from [69] with kind permission from Kluwer

Academic Press.



of S at kIzl � Iz0; and (ii) from steady-state magneti-

sation of S under the condition of saturation of I:

kIzl � 0: The value of the heteronuclear NOE (Eq.

(1.29b)) is then obtained as a ratio of the peak inten-

sities in these two spectra. The saturation of proton I is

reached, e.g. by a sequence of repeated 1208 1H pulses

[73]. The saturation period in spectra with initial kIzl �
0 and a delay between scans in spectra with initial kIzl �
Iz0 should ideally exceed the transverse relaxation time

T1 of spin S by 4±5 times.

Complications in the backbone 15N{1H} NOE

measurements are mainly associated with the satura-

tion transfer from solvent protons to amide protons

occurring through chemical exchange, spin diffusion

or direct NOE with the solvent protons (see Ref.

[74,75]). These effects can substantially reduce the

signal intensities in 15N{1H} NOE spectra obtained

without prior saturation of the amide protons.

Subsequently, this leads to overestimation of the abso-

lute value of the 15N{1H} NOE Eq. (1.29b). Since T1 of

the solvent protons is relatively long (for water at 308C it

ist4 s, i.e. of the order of the delay between the scans) it

is desirable to use sequences with minimal perturbation

of the solvent magnetisation. In particular, one needs to

avoid a gradient de-phasing of the solvent magnetisation

and to return the solvent magnetisation to the positive z

direction at the end the pulse sequence (see Ref. [74]).

1.4.3. Temperature control in the relaxation

experiments

Special precautions should be taken to keep the

temperature constant throughout relaxation experi-

ments. It is known that radio-frequency irradiation

during NMR experiments can cause substantial heat-

ing of the sample, resulting in different effective

temperatures of the sample for different experiments

[76±78]. The temperature dependent drifts of the

longitudinal and transverse relaxation rates are of

about 3% per K due to changes in the overall rotation

rate of the molecule affected by the changes in the

solvent viscosity. The effect of sample heating may

introduce a signi®cant bias in the extracted relaxation

data and subsequently in parameters of molecular

motions. First, the extracted relaxation data are

affected by the temperature variations between the

data points of the individual relaxation experiments

(e.g. R1 and R2 data points recorded with different

relaxation delays T or 1H{15N} NOE recorded with

or without proton saturation). Second, a different

mean temperature in different types of relaxation

experiments results in inconsistency between experi-

mental relaxation data.

The mean temperature in different relaxation

experiments might be adjusted by an appropriate

setting of the temperature control unit. Several

approaches may be considered to keep the tempera-

ture constant for different data points of individual

relaxation experiments: (i) All spectra with different

relaxation delays can be recorded separately with

individual temperature corrections; however, this

approach can result in artefacts due to the spectro-

meter and sample instabilities during long experi-

ments. (ii) Additional delays and/or off-resonance

irradiation can be introduced into the pulse

sequences in order to equalise the heat dissipation

for different relaxation delays (as has been done in

the 15N{1H} NOE measurements [79,80]). (iii)

Temperature ¯uctuations can be averaged by using

interleaved acquisition [78]. The latter method uses

the fact that the time constant for temperature equi-

libration exceeds the duration of single scan. Thus,

when the equilibrium conditions in a NMR experi-

ment are reached, the temporary changes in the

sample heating due to irradiation in the different

experiments are ef®ciently averaged out and do

not lead to signi®cant temperature ¯uctuations

provided these occur fast enough and periodically.

These requirements can be met by interleaved

acquisition where relaxation delays are alternated

after each scan such that the long and short delays

are grouped pairwise. Since the duration of a single

scan is ca. 2±4 s, the frequency of alternation is

suf®ciently high to achieve good averaging of the

temperature ¯uctuations.

1.5. Parameters governing relaxation

The relaxation rates in a two-spin 1/2 system

depend, among other things, on the parameters of

the physical interactions governing the relaxation.

The DD relaxation rates depend on the dipolar

constant AD (Eq. (1.22b)) which is connected with

the distance between the two nuclei. The relaxation

rates due to CSA mechanism are determined by the

constants ACSA(I), ACSA(S) (Eq. (1.24d)), which depend

on eigenvalues of the shielding anisotropy tensors of
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the nuclei.2 A dynamic analysis is greatly facilitated

by the fact that the bond distances and shielding aniso-

tropy tensors are approximately constant, and are

known within a reasonable precision for particular

spin systems in proteins. However, at least two

assumptions, intrinsic consequences of the previous

statement, should be emphasised. It is assumed that

the interaction parameters are constant in time and are

not signi®cantly different for the different sites in the

protein. Though reasonable and productive, neither of

the two assumptions holds rigorously. In this section

we address some practical aspects: What are the

limitations of these assumptions? What values of the

parameters should one use? And what reservations on

the results of the dynamic analysis should one make

due to the parameter uncertainties?

1.5.1. Chemical shift anisotropy

The relaxation rates due to the CSA mechanism

depend on the symmetric traceless tensor of the

shielding anisotropy, which in general can be parame-

terised by two constants: d z and h � �dx 2 dy�=dz (see

Section 1.2.2). For an axially symmetric shielding �h �
0� the relaxation due to the CSA mechanism depends on

the single value Dd � dk 2 d' � �3=2�dz; where dk �
dz and d' � dx;y are shielding constants corresponding

to the directions along and perpendicular to the

symmetry axis of the shielding tensor. The value of

Dd is usually referred to as the CSA value.

The CSA values for 13Ca nuclei are in the range 0±

40 ppm [81±84]. Though these values are detectable

for a protein in solution and carry valuable structural

information [83], the relaxation due to the CSA

mechanism is usually negligible in a regular dynamics

analysis employing 13Ca R1, R2, and 1H± 13C NOE

measurements. Omission of the CSA relaxation in

the analysis of 13Ca data is motivated not only by

the small values of CSA, but also by the complications

arising from their strong dependence on the structure

and from the lack of axial symmetry of the 13Ca

shielding tensor.

For the amide 15N, the CSA relaxation pathway is

comparable in ef®ciency with that due to the 1H± 15N

DD interaction. The analysis of the relaxation data in

terms of the HN bond dynamics is signi®cantly facili-

tated by the facts that the amide nitrogen shielding

tensor is almost axially symmetric with the symmetry

axis nearly parallel to the HN bond. For the amide
15N, the value d k corresponds to the least shielded

(most high-®eld) component of the chemical shielding

tensor, which results in a negative sign for CSA.

Solid-state NMR experiments provide a relatively

narrow distribution for the amide 15N CSA with a

mean value of 2156.0 ppm and a standard deviation

of ca. 5.7 ppm (Table 2). The symmetry axis of the

shielding tensor is tilted 15±258 from the direction of

the HN bond. Based on these data, the uniform CSA

values of 2160 ppm were commonly employed in

early backbone relaxation studies on proteins in solu-

tion [49]. However, it was noted later that the use of

uniform 15N CSA values of 2170 ppm provide a

better ®t to the relaxation data [17,85]. Similar CSA

values were inferred from measurements of small

changes of chemical shifts induced by a weak protein

alignment in a strong magnetic ®eld [86] or in liquid

crystalline systems [87]. It has been suggested [85]

that the difference of ca. 10 ppm between this value

and values derived in solid-state experiments can be

alleviated by properly taking into consideration ther-

mal and zero-point quantum liberations, which are

often neglected in the analysis of solid-state data.

Chemical shielding tensors, having their origin in

the molecular electronic con®guration, are quite

sensitive to changes in molecular geometry. The

CSA tensors of a ¯exible polypeptide molecule are

thus time- and site-dependent regarding their principal

values and the orientations of the principal axes. The

effect of the CSA relaxation increases as the square of

the magnetic ®eld. For the amide 15N at the ®elds

higher than ca. 18.0 T one needs to take into account

not only the CSA relaxation mechanism per se but

also the variability of the CSA values [88] at different

sites of the protein. CSA calculations employing

density functional theory on the snapshots from the
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2 For a 15N± 1H nuclear pair of the protein backbone the value of

the dipolar constant AD (Eq. (1.22b)) calculated assuming a constant

N±H distance of 1.02 AÊ is 21:973 £ 104 s21
: The value of ACSA

(Eq. (1.24d)) for 15N nucleus, calculated assuming an axially

symmetric shielding tensor with dk 2 d' � �3=2�dz � 2160 ppm

is 27:916 £ 102s21 T21
: The value of ACSA (Eq. (1.24d)) for 1H

nucleus, calculated assuming an axially symmetric shielding tensor

with dk 2 d' � �3=2�dz � 10 ppm is 24:884 £ 102T21 s21
: The

constants AD and ACSA were calculated using the values 1:054 £
1034 J s for the Planck constant "; 4p £ 107 T mA21 for the perme-

ability of free space m0, 2.675 £ 108 T21 s21 for gH and 22.71 £ 107

T21´s21 for gN.



molecular dynamic simulation on ubiquitin were

recently reported [89]. It was shown that the CSA

values exhibit substantial ¯uctuations in the picose-

cond±nanosecond time-scale, which could have a

signi®cant effect on the measured relaxation rates.

Recently several new methods were introduced allow-

ing measurements on amide 15N CSA for proteins in

solution [17,22,88,90]. These measurements resulted

in a rather broad distribution of 15N CSA with a mean

value of 2172 ppm [88] for ribonuclease H and

2159 ppm [90] for human ubiquitin, and standard

deviations of about 13 ppm and 16 ppm respectively.
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Table 2

Summary of the 15N chemical shift tensors (ppm) from different peptides obtained by solid-state NMR (Here d 11, d 22, and d 33 are the frequency

ordered (d 11 . d 22 . d 33, and d 11 is the most high ®eld) principal values of the chemical shift tensor [14]; a is the angle between the direction of

d 11 component and amide H±N bond; diso � �d11 1 d22 1 d33�=3; Dd are CSA values de®ned as Dd � �d33 1 d22�=2 2 d11; CSA values are

distributed with the mean of 2156.0 ppm and standard deviation of 5.7 ppm. All 15N chemical shifts are referenced relative to liquid (258C)

NH3 (27.3 ppm for saturated aqueous NH4Cl) [256]. An asterisk notes the residues labelled by 15N)

Sample d 33 d 22 d 11 d iso a Dd Reference

AlapAla 65.3 78.1 215.5 119.6 12.68 2144 [243]

AcGlypAlaNH2 44.6 85.1 229.4 119.7 17.6 ^ 28 2164.55 [244]

(pAla)n a-helix 47.7 64.1 213.7 108.5 2157.8 [245]

(pAla)n-5 b-sheet 53.7 71.4 210.7 111.9 2148.2 [245]

(pAla,Leu)n a-helix 44.7 66.6 213.7 108.3 2158.1 [245]

(pAla,Asp (OBzl))n a-helix 47.7 68.4 217.7 111.3 2159.7 [245]

(pAla,Glu (OBzl))n a-helix 48.7 66.4 215.7 110.3 2158.2 [245]

(pAla,Glu (OMe))n a-helix 46.7 67.8 214.7 109.7 2157.5 [245]

(pAla, Val)n b-sheet 44.7 72.1 211.7 109.5 2153.3 [245]

(pAla,I1e)n b-sheet 49.7 72.7 209.7 110.7 2148.5 [245]

(pAsp (OBzl))n-1 aR-helix 48.7 62.5 214.7 108.6 2159.1 [246]

(pAsp (OBzl))n-2 aL-helix 50.7 58 210.7 106.5 2156.35 [246]

(pAsp (OBzl))n-3 vL-helix 49.7 57.1 211.7 106 2158.3 [246]

(pAsp (OBzl))n-4 b-sheet 50.7 66.1 212.7 109.7 2154.3 [246]

N-AcpGly 37.0 82.8 220.4 113.4 25.5 ^ 18 2160.50 [247]

(pGly) collagen powder 42.3 67.0 223.4 110.9 24.5 ^ 18 2168.75 [247]

(pGly) collagen oriented 42.3 67.0 223.4 110.9 24.5 ^ 28 2168.75 [247]

(pGly) collagen 45.6 67.6 216.8 110.0 238 2160.20 [248]

(pGly) maganine 42.0 73.2 215.0 110.1 22 ^ 28 2157.40 [249]

Boc-(Gly)2
pGly-OBzl 55.1 62.1 223.0 113.4 22 ^ 18 2164.40 [250]

Boc-(Gly)2
pGly-OBzl 36.4 83.4 220.4 113.4 24 ^ 18 2160.50 [250]

Gly pGly 46.8 79.7 220.8 115.8 2157.55 [251]

Gly pGly´HCL 57.3 59.8 210.0 109.0 18.6 ^ 28 2151.45 [244]

AcGly pGlyNH2 40.7 64.2 210.0 105.0 17.6 ^ 28 2157.55 [244]

Gly pGly´ HCl´H2O (powder) 58.5 64.1 209.5 110.7 25 ^ 58 2148.20 [99,252]

Gly pGly´ HCl´H2O (crystal) 60.3 70.9 215.9 115.7 21.38 2150.30 [253]

(pGly)n b-sheet 45.7 61.4 205.7 104.3 2152.15 [254]

(pGly)n 310-helix 49.7 62.8 214.7 109.1 2158.45 [254]

(pGly,Ala)n a-helix 44.7 57.6 212.7 105.0 2161.55 [254]

(pGly,Ala)n b-sheet 39.7 66.0 206.7 104.1 2153.85 [254]

(pGly,Leu)n a-helix 45.7 61.7 210.7 106.0 2157.00 [254]

(pGly,Leu)n b-sheet 40.7 66.2 206.7 104.5 2153.25 [254]

(pGly,Val)n b-sheet 39.7 74.6 203.7 106.0 2146.55 [254]

(pGly,Ile)n b-sheet 45.8 68.3 209.7 108.6 2152.65 [254]

(pGly,Lys(Z))n a-helix 40.7 69.2 208.7 106.2 2153.75 [254]

(pGly,Glu(OBzl))n a-helix 47.7 61.2 210.7 106.5 2156.25 [254]

(pGly,Sar)n 38.7 65.8 204.7 103.1 2152.45 [254]

(pPhe) maganine 55.0 80.0 220.0 118.3 22 ^ 38 2152.5 [255]

AcGly pTyrNH2 52.1 77.1 209.3 112.8 19.6 ^ 28 2144.70 [244]



Similar mean values and variances were obtained in a

dynamic study of a peptide (1±36) from bacterio-

rhodopsin, where CSAs or H±N distances were

adjusted along with the parameters of the dynamic

models [78] using relaxation data measured at three

magnetic ®elds. Ab initio calculations reveal substan-

tial dependence of the CSA values both from the

backbone conformation and the parameters of the

hydrogen bonding. Thus, CSA values of 2158,

2135, and 2124.5 ppm were obtained in density

functional calculations [91] for a glycine amide nitro-

gen in extended, b-sheet, and a-helix conformations,

respectively. In these and other studies somewhat less

prominent changes of the CSA values (ca. 3±9 ppm)

upon the formation of a hydrogen bond were also

reported [84,91,92].

Recent reports present interesting data on the CSA

of amide protons [54,84,93±96]. Solid-state NMR

measurements [95,96] on model compounds showed

that the shielding tensor of an amide proton is not

axially symmetric. The most shielded component of

the tensor is aligned parallel to the H±N bond. Studies

on amide CSA for proteins in solutions using cross-

correlated cross-relaxation measurements were char-

acterised mostly by its pronounced dependence on the

parameters of hydrogen bonding. The CSA values

obtained for ubiquitin, HIV-1 protease, HU protein,

and savinase assuming an axially symmetric shielding

tensor are distributed in the range 0±25 ppm

[54,93,94], with the lowest and highest values corre-

sponding to the non hydrogen bonded amides and

amides with the shortest hydrogen bonds, respec-

tively. An empirical dependence for the CSA was

proposed [94]:

Dd � 4:9 1 1:96=�rH¼O 2 1:3�2; �1:49�

where Dd is given in ppm and the length of the hydro-

gen bond rH¼O in AÊ . The residual root mean square

deviation between the CSA values predicted by Eq.

(1.49) and those measured for ubiquitin is as small as

1.8 ppm. Eq. (1.49) is in qualitative agreement with

the results of ab initio calculations on N-methylaceta-

mide [84], which also indicates a steep dependence of

the amide CSA on the length of the hydrogen bond.

Since the hydrogen bonds are usually slightly shorter

in b-sheets than in a-helices, the amide CSA are

sensitive to the type of secondary structure, with

mean values of 9 ^ 4 ppm and 16 ^ 6 ppm for a-

helixes and b-sheets, respectively [54]. For amides

exposed to the water the CSA values are only slightly

(ca. 1 ppm) smaller than those in b-sheets [94].

1.5.2. Length of 1H± 15N and 1H± 13Ca bonds

The length of the amide HN bond to be used in 15N

relaxation studies is the subject of an ongoing debate,

with solid-state NMR yielding values ca. 0.04 AÊ

larger than the neutron diffraction and ab initio calcu-

lations [97]. The bond length obtained from the

neutron diffraction ranges from 1.02 to 1.04 AÊ . Ab

initio calculations on N-methylacetamide resulted in

an even shorter value of 1.000±1.008 AÊ for the energy

minimum of the H±N amide bond [98]. Solid-state

NMR on model peptides yields distances of 1.06±

1.07 AÊ [95,99]. A typical ab initio value for the
1H± 13Ca bonds is 1.085 AÊ with a little variation for

different arrangements. Neutron diffraction yields

1.09±1.10 AÊ [98,100] for the 1H± 13Ca bonds. The

NMR experiment, again, provides a higher value of

1.17 AÊ [101].

It is accepted now [98,99] that the discrepancies

between the distances inferred from the measurements

of the dipolar interaction in NMR and those obtained

using scattering amplitudes in neutron diffraction are

mostly due to the anharmonicity of the bonding poten-

tial and to the different averaging of zero-point vibra-

tional motion. Both experimental methods provide

apparent effective distances, which are biased from

their values anticipated from the position of the

bond energy minimum. It should be emphasised that

vibrations are mostly de®ned by the local structure.

These vibrations are present even at zero temperature.

In this regard, the selection of a particular value for

the H±N or H±Ca distance can be related to the selec-

tion of a reference dynamic behaviour [98], or, in

other words, a reference amplitude of molecular ¯uc-

tuations. In some circumstances, the choice of this

reference is a matter of convenience. Changing from

an unphysical rigid reference system, where all intra-

molecular motions are `frozen', to a system account-

ing for local stretching and bending vibrations will

just scale the order parameters or density functional

values by a constant factor. For example, one can use

a traditional value [49] of 1.02 AÊ for the length of the

amide H±N bond to consider the difference in order

parameters between difference amides in a protein,
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but only those S2 values, which are below ca. 0.9 can

be thought as reasonable and might be interpreted in

terms of relevant thermal motions of an H±N

bond. Alternatively, a quantum reference was

proposed [98], which allows for vibrations by

employing an effective distance between the

nuclei (1.04 AÊ and 1.17 AÊ for H±N and H±Ca,

respectively). This of course leads to order para-

meters that are much closer to unity. Complica-

tions with the reference frame arise, however, if

relaxation data (or residual dipolar coupling

measurements [101]) are analysed simultaneously

for different pairs of nuclei, e.g. for 1H± 15N and
1H± 13Ca. Vibrational corrections must also be

considered if dynamic parameters are used for a

quantitative interpretation in terms of simple clas-

sical models (e.g. diffusion in a cone), calculation

of the residual entropy, or comparison with results

of a molecular dynamics simulation [102].

Lack of high-resolution neutron diffraction data on

proteins and inability of ab initio calculations to deal

with big systems leave the question open to what

extent the HN distance variations observed in neutron

diffraction and NMR experiments are connected with

the structural environment of the protein and can

change in the course of conformational transforma-

tions. It is notable in this respect that an H±N distance

depends on the parameters of a hydrogen bond. Ab

initio calculations [81,98,100,103] on N-methylaceta-

mide have shown that the HN distance increases by

0.001±0.018 AÊ upon dimerisation accompanied by

formation of a hydrogen bond. Even larger elonga-

tions of up to 0.04 AÊ were suggested [100] for the

transition from gas to a crystalline environment,

where the hydrogen bonds became arranged into a

network with p-bond cooperativity [97]. In the

dynamics study of (1±36) bacteriorhodopsin under

hydrostatic pressure of 2000 bar [104], it was

suggested that both 15N CSA and H±N distances

could be slightly modi®ed relative to their values at

ambient pressure. Namely, an elongation by ca.

0.01 AÊ was proposed for the amides in the a-helical

part of the peptide.

From the above one can anticipate that, as it

concerns NMR relaxation, H±N distances and amide
15N CSA values can be subjected to signi®cant site-to-

site variations depending on the structural and

dynamic properties of the corresponding hydrogen

bonds. For the relaxation of the Ca nuclei, however,

much smaller variations induced by different molecu-

lar con®gurations are expected due to variations in

both CSA and H±Ca distances.

2. Brownian overall molecular motion

A comprehensive theory connecting different

mechanisms of spin relaxation with values of the

spectral density function at characteristic frequencies

has been described in the previous sections. A further

analysis of the NMR relaxation data relies on the

particular form of the spectral density functions

characteristic for molecular dynamic processes. For

relatively rigid macromolecules, such as proteins,

two types of molecular motion should be considered

in solution: (i) overall Brownian diffusion; and (ii)

intramolecular mobility. The assumption of indepen-

dence of these motions allows one to consider them

separately, which substantially simpli®es the data

analysis. Typically intramolecular motion affects

NMR relaxation to a much lesser extent than the

Brownian diffusion. Thus, the effect of internal motion

is always masked by the overall molecular motion. In

some cases improper assumptions about molecular

diffusion result in erroneous parameters for intra-

molecular dynamics extracted from the NMR

relaxation data [105,106]. Therefore, a correct

characterisation of the overall molecular motion

plays a key role in NMR relaxation studies of internal

dynamics of macromolecules.

In this section we consider the effect of Brownian

diffusion of the molecule on NMR relaxation.

Derivation of the NMR correlation functions (see

Refs. [107,108]) based on Green's function for rigid

body diffusion [109,110] is presented in Section 2.1.

Some of these results have been already reviewed

[16,111,112]. In Sections 2.2 and 2.3 we review the

properties of the diffusion tensors characterising

the molecular Brownian diffusion, the computational

methods for their calculation and applications of

these methods to proteins.

2.1. Diffusion of a rigid particle. NMR correlation

functions

2.1.1. Separation of overall and internal motions

The spectral density function J(v ) in the
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expressions for relaxation rates (see Section 1.2) is the

Fourier transform of the correlation function C(t)

(Eqs. (1.13a), (1.13b)). The correlation functions for

DD and CSA relaxation mechanisms (see Eqs. (1.19b)

and (1.24e)) are given by:

Cmm 0 �t� � 4pkYp
2m�F L�0��Y2m 0 �F L�t��l; �2:1�

where F L denote the polar angles u and w that deter-

mine the orientation of the relaxation relevant vector

in the laboratory co-ordinate frame. If the overall and

internal molecular motions are independent it is

convenient to consider them separately:

Cmm 0 �t� � 4p
X2

n;n 0�2 2

kD2p

mn�Q�0��D 2
m 0n 0 �Q�t��l

� kY p
2n�FM�0��Y2n 0 �FM�t��l; �2:2�

where Q denote the Euler angles a , b and g de®ning

the orientation of the molecular co-ordinate frame

with respect to the laboratory, FM the polar angles

de®ning the orientation of the relaxation relevant

vector in the molecular frame, D 2
mn are Wigner func-

tions of rank 2 (see Appendix A). Here the molecular

D.M. Korzhnev et al. / Progress in Nuclear Magnetic Resonance Spectroscopy 38 (2001) 197±266224

Table 3

The eigenvalues and eigenfunctions for the rotational diffusion of a rigid molecule (Here the eigenfunctions of the asymmetric rotator are

written in a form used by Huntress [111]. The expansion coef®cients aLnk are given explicitly in the expressions for eigenfunctions of the

asymmetric rotator cLnm)

Eigenvalues ELn Eigenfunctions cLmn

Isotropic molecule

DL�L 1 1� fLkm �
����������
2L 1 1

8p2

r
DLp

mk�Q�
where D � Dx � Dy � Dz are eigenvalues of the rotational

diffusion tensor of the molecule

fLkm Ð eigenfunctions for symmetric rotator

DL
mk�Q� Ð Wigner functions (Appendix A)

Axially symmetric molecule

Elk � D'L�L 1 1�1 �Duu 2 D'�k2 where D' � Dx � Dy;

Duu � Dz are eigenvalues of the rotational diffusion tensor of

the molecule

fLkm �
����������
2L 1 1

8p2

r
DLp

mk�Q�
fLkm Ð eigenfunctions for symmetric rotator

Asymmetric molecule (for L � 2)

E2;2 � 6�D 1
������������
D2 2 D 02
p � cLnm �

X
k

aLnkfLkm �
����������
2L 1 1

8p2

s X
k

aLnkDLp

mk�Q�

E2;22 � Dx 1 Dy 1 4Dz where
X

k

aLnkap
Lnk � 1;

E2;21 � Dx 1 4Dy 1 Dz cLnm Ð eigenfunctions for asymmetric rotator Ð linear combinations of

eigenfunctions of symmetric rotator

E2;1 � 4Dx 1 Dy 1 Dz c2;2;m � 1

N

�
uf2;0;m 1

w��
2
p �f2;2;m 1 f2;22;m�

�
E2;0 � 6�D 2

������������
D2 2 D 02
p

� c2;22;m � 1��
2
p �f2;2;m 2 f2;22;m�

where D � Dx 1 Dy 1 Dz

3
c2;21;m � 1��

2
p �f2;1;m 2 f2;21;m�

D 0 �
�����������������������������
DxDy 1 DyDz 1 DxDz

3

s
c2;1;m � 1��

2
p �f2;1;m 2 f2;21;m�

c2;0;m � 1

N

�
wf2;0;m 2

u��
2
p �f2;2;m 1 f2;22;m�

�
where N � 2

�����
Dw
p

; u � ��
3
p �Dx 2 Dy�;

w � 2Dz 2 Dx 2 Dy 1 2D; D � 3
������������
D2 2 D 02
p



co-ordinate frame means the frame where the rotational

diffusion tensor of the molecule (see below) has a diag-

onal form. The ®rst averaging in Eq. (2.2) corresponds to

the overall molecular diffusion and is given by:

kD2p

mn�Q�0��D 2
m 0n 0 �Q�t��l

�
Z

dQ0

Z
dQP�Q0�G�r;Q; tur0;Q0; 0�

�D2p

mn�Q0�D2
m 0n 0 �Q� dr dr0; �2:3�

where P(Q0) denotes the probability density for initial

orientationQ0 of the molecular frame at zero moment of

time (P(Q0) is equal to 1/(8p2) for the isotropic media),

G(r,Q ,tur0,Q0,0) is the Green function for rigid body

diffusion, de®ning the probability to ®nd a rigid body

at the point r with the orientation Q at time t, if at zero

time it was in the point r0 with the orientation Q0. The

second averaging in Eq. (2.2) represents intramolecular

motions.

2.1.2. Green function for rigid body diffusion

For the consideration of DD and CSA relaxation in

macromolecules the translational diffusion is not

important and only Brownian rotation of the molecule

should be taken into account. It is clear, however, that

a body of irregular shape undergoes a coupled trans-

lational and rotational diffusion. For example,

translation of a screw-shaped particle would lead to

a rotation and vice versa. Therefore, we consider the

more general case of coupled translational and

rotational diffusion [110] instead of pure rotational

diffusion of the molecule [109].

The Green function for the coupled translational

and rotational diffusion of a rigid body obeys the

following relationship [110]:

2

2t
G�r;Q; tur0;Q0; 0� � ĤG�r;Q; tur0;Q0; 0� �2:4a�

with the initial condition

G�r;Q; 0ur0;Q0; 0� � d�r 2 r0�d�Q 2 Q0�; �2:4b�
where

Ĥ � 2P̂´Dt´P̂ 2 P̂´Dtr´L̂ 2 L̂´Drt´P̂ 2 L̂´Dr´L̂; �2:4c�
P̂ and L̂ are molecular momentum and angular

momentum operators, respectively; Dt, Dr and Drt �
DT

tr are 3 £ 3 diffusion tensors accounting for molecu-

lar translation, rotation and coupling between transla-

tion and rotation, respectively. Tensors Dt, Dtr, Drt and

Dr comprise the generalised 6 £ 6 diffusion tensor

describing the diffusion of rigid body [113]. Goldstein

[110] showed that a Green function (Eq. (2.4a)) that

rigorously accounts for the rigid body translation,

rotation and coupling between them is given by:

G�r;Q; tur0;Q0; 0�
�

X
L;n;L 0;n 0;m

Z dpz

2p
eipz�rz2rz0�cLnm�Q�c p

L 0n 0m�Q0�

£ exp�2�p2
z D0 1 ELn 1 p2

z V̂ �2�Ln �t�
£ 0h jT̂sLnmexp

Zt

0
ĤI�t 0� dt 0

� �
s1

L 0n 0m 0j i; �2:5�

where pz is the z-projection of the molecular momen-

tum in the laboratory co-ordinate frame; r is the origin

of the molecular co-ordinate frame; the cLnm(Q )

constitute a complete orthonormal set of eigen-

functions of the anisotropic rotator with the eigen-

values ELn (see Table 3); D0 � Tr�Dt�=3;
V �2�Ln � kcLnmuV̂ �2�ucLnml is the matrix element of V̂ �2�

operator in Goldstein's notation [110, Eq. (25)]; T̂

is the operator of chronological order; Ĥl is the off-

diagonal part of the Green function evolution operator

(Eq. (2.4c)) in the interaction representation and

representation of the secondary quantisation [110,

Eq. (31)]; the raising and destroying operators s1

and s obey the following rules: sLnmucLnm�Q�l � u0l
and s 1

Lnmu0l � ucLnm�Q�l: The matrix element

k0u¼u0l on the right-hand side of Eq. (2.5) is respon-

sible for the coupling between the translation and

rotation.

Calculation of the correlation function (Eq. (2.2))

requires an estimation of the integral on the right-hand

side of Eq. (2.3). From Eqs. (2.3) and (2.5), after

integration over the co-ordinates r and r0, one can

get (see Ref. [114]):

kD 2p

ql �Q�0��D 2
q 0l 0 �Q�t��l

� 1

8p 2

Z
D2p

ql �Q�D 2
q 0l 0 �Q0� dQ dQ0

X
L;n;L 0;n 0;m

Z
dpzd�pz�

£ cLnm�Q�c p
L 0n 0m�Q0� exp�2�p2

z D01ELn1p2
z V̂ �2�Ln �t�

£ 0h jT̂sLnm exp
Zt

0
ĤI�t 0� dt 0

� �
s1

L 0n 0m 0j i: (2.6)
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The right-hand side of Eq. (2.6) contains the factor

d(pz). However, if pz � 0; ĤI is also zero [110, Eq.

(31)]. Thus, the matrix element k0u¼u0l responsible

for the coupling between translation and rotation in

Eq. (2.6) reduces to dLL 0d nn 0. Finally, the integration

over pz in Eq. (2.6) results in:

kD2p

ql �Q�0��D 2
q 0l 0 �Q�t��l

� 1

8p 2

Z
GR�Q; tuQ0; 0�D2p

ql �Q0�D2
q 0l 0 �Q� dQ0 dQ;

�2:7�

where GR�Q; tuQ0; 0� is the Green function for the

pure rotational diffusion without coupling with

translation:

G�Q; tuQ0; 0� �
X

L;n;m

cLnm�Q�c p
Lnm�Q0� e2ELnt �2:8�

The same form of the Green function for pure rota-

tional diffusion was initially obtained by Favro [109].

Therefore, the coupling between molecular translation

and rotation can be disregarded in the calculation of

NMR correlation functions and does not affect NMR

relaxation.

2.1.3. NMR correlation functions

Let us now derive the expressions for the correla-

tion function (Eq. (2.2)) of a vector, attached to a

particle of arbitrary shape, with rotational diffusion

described by Favro's Green function (Eq. (2.8)).

Special cases of asymmetric, axially symmetric and

isotropic molecules are considered.

Asymmetric molecule. To derive the expression for

the correlation function one needs to perform aver-

aging on the right-hand side of Eq. (2.3). Using

Favro's Green function (Eq. (2.8)), eigenfunctions

and eigenvalues for an asymmetric rotator (Table 3)

one can write Eq. (2.3) in the following form:

kD2p

mn�Q�0��D 2
m 0n 0 �Q�t��l

� 1

8p 2

Z
dQ0

Z
dQD 2p

mn�Q0�D2
m 0n 0 �Q�

�
X
Lhm

c p
Lhm�Q0�cLhm�Q� e 2ELht

� 1

8p2

X
L

2L 1 1

8p2

X
mh

e2ELht

£
X

k

ap
Lkh

Z
D2p

mn�Q0�DL
mk�Q0� dQ0

" #

£
X

k

aLk 0h

Z
D2

m 0n 0 �Q�D Lp

mk 0 �Q� dQ

" #

� 1

5

X
h

a p
2nha2n 0h e2E2ht

: (2.9)

Here we used the orthogonality of the Wigner func-

tions, i.e. the delta-functions dL,2, dmm 0m, d kn and d k 0n 0

arising upon integration allows us to avoid the

summation over the indexes L, m , k and k 0. Substi-

tuting Eq. (2.9) into Eq. (2.2) one can write the

expression for the correlation function in a form:

Cmm 0 �t� � 4p

5

X
h

e2E2ht
X
n;n 0

ap
2nha2n 0h

� kYp
2n�FM�0��Y2n 0 �FM�t��l; �2:10a�

or, under the condition that a vector is rigidly attached

to an asymmetric molecule and its orientation in the

molecular frame is given by the polar angles FM:

Cmm 0 �t� �
X2

h�2 2

ch e2t=th ; �2:10b�

where

ch � 4p

5

X
n;n 0

ap
2nha2n 0hYp

2n�FM�Y2n 0 �FM�

and th � 1

E2h
: (2.10c)

The expressions for E2h , corresponding to the inverse

of the correlation times th , are listed in Table 3. The

coef®cients in ch in the correlation function (Eqs.

(2.10b) and (2.10c)) are calculated using the expan-

sion coef®cients a2nh for the eigenfunctions of the

asymmetric rotator (see Table 3):

c2 � u2

4N2
�3 cos2 u 2 1�2 1

3w2

4N2
sin4 u cos2 2w

1

��
3
p

u

8D
�3 cos2 u 2 1�sin2 u cos 2w� d 2 e

�2:10d�
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c22 � 3
4

sin4 u sin2 2w � 3l2m2

c21 � 3
4

sin2 2u cos2 w � 3l2n2

c1 � 3
4

sin2 2u sin2 w � 3m2n2

c0 � w2

4N2
�3 cos2 u 2 1�2 1

3u2

4N2
sin4 u cos2 2w

2

��
3
p

u

8D
�3 cos2 u 2 1� sin2 u cos 2w� d 1 e;

where

d � 3�l 4 1 m4 1 n4�2 1

4

ei � Di 2 D������������
D2 2 D 02
p �i � x; y; z�:

The coef®cients u, w and N are listed in Table 3; the

coef®cients ch in the correlation function (Eqs.

(2.10b) and (2.10c)) are written: (i) in terms of the

polar angles u , w determining the vector direction in

the molecular co-ordinate frame, where the rotational

diffusion tensor has diagonal form; and (ii) in terms of

directional cosines l, m and n for the vector with

respect to the x-, y- and z-axes of the molecular

frame. From Eqs. (2.10b)±(2.10d) it is seen that the

correlation function Cmm 0 �t� � C�t� for a vector in a

rigid asymmetric molecule has a ®ve-exponential

form. The correlation times in the exponents depend

on the components of the rotational diffusion tensor.

The weights of the exponential terms depend on the

components of the rotational diffusion tensor and on

the direction of the relaxation-relevant vector in the

molecular co-ordinate frame. The same result was

obtained by Woessner [107] without implementation

of the Green function formalism.

Axially symmetric molecule. The correlation func-

tion for a vector rigidly attached to an axially

symmetric molecule is calculated analogously to

that for the asymmetric molecule, i.e. using eigenva-

lues and eigenfunctions of the symmetric rotator

(Table 3). Assuming that Dx;y � D' and Dz � Duu
one can write the correlation function in a form:

C�t� � A e2t=tA 1 B e2t=tB 1 C e2t=tC ; �2:11a�
where

A � 1
4
�3cos2u 2 1�2 � c0

B � 3
4

sin22u � c1 1 c21

�2:11b�

C � 3
4

sin4u � c2 1 c22

�tA�21 � 6D' � E2;0 �tB�21 � 5D' 1 Duu � E2;^1

�2:11c�

�tC�21 � 2D' 1 4Duu � E2;^2;

the values of E2h are listed in Table 3, the coef®cients

ch are given by Eq. (2.10d). From Eqs. (2.11a)±

(2.11c) it is seen that the correlation function for the

vector in the axially symmetric rigid molecule reduces

to a three-exponential form. The weights of exponen-

tial terms in the correlation function (Eq. (2.11a))

depend only on the direction of the vector with respect

to the symmetry axis of the rotational diffusion tensor.

Spherical molecule. For a vector rigidly attached to

a rigid isotropic molecule �Dx � Dy � Dz � D� the

correlation function reduces to the mono-exponential

form:

C�t� � e2t=tR ; �2:12�
where tR � 1=�6D� (see Table 3). In the case of an

isotropic molecule with intramolecular motions the

correlation function (Eqs. (2.2) and (2.10a)) can be

written as:

C�t� � e26Dt 4p

5

X2

n�2 2

kYp
2n�FM�0��Y2n�FM�t��l

 !

� e2 6Dt

CO�t�
kP2�mM�0�mM�t��l

CI �t�
� CO�t�CI�t�;

�2:13�
where P2�x� � �3x2 2 1�=2 is the Legendre
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polynomial of rank 2 (here we used the addition

theorem for spherical harmonics, see Appendix A),

mM is the unit vector pointed along the relaxation-

relevant direction, i.e. along the IS vector for DD

relaxation or along the symmetry axis of the shielding

anisotropy tensor for CSA relaxation. From the Eq.

(2.13) it is seen that for an isotropic molecule the

correlation function can be represented as a product

of the correlation functions of overall CO(t) and inter-

nal CI(t) motions. The only condition required for

such a separation is independence of the internal

and overall motions. As is clear from Eq. (2.10a),

for the axially symmetric and asymmetric molecule

the separation C�t� � CO�t�CI�t� is not rigorous, but is

often used as an approximation. In this case the corre-

lation functions given by Eq. (2.10b)±(2.10d) and

Eqs. (2.11a)±(2.11c) are used as CO(t) and polar

angles u , w or direction cosines l, m, n in Eqs.

(2.10d) and (2.11b) refer to the averaged orientation

of the relaxation-relevant vector.

The spectral density functions required for calcula-

tion of the relaxation rates in a rigid asymmetric,

axially symmetric or isotropic molecule are given

by cosine Fourier transforms of the correlation func-

tions Eqs. (2.10b), (2.11a) and (2.12), respectively. As

an example, the longitudinal and transverse relaxation

rates and heteronuclear NOEs for 15N and 13Ca nuclei

of 15N± 1H and 13Ca± 1H pairs, calculated using the

isotropic spectral density, are shown in Fig. 5.

2.2. Calculations of the diffusion tensors

The correlation function of a vector rigidly attached

to an anisotropic molecule (Eqs. (2.10b), (2.11c))

depends on, Dr, the rotational diffusion tensor of the

molecule. In principle, Dr for an anisotropic molecule

can be obtained directly from relaxation data for a set

of 15N± 1H vectors (see below). However, the analysis

of the relaxation data is signi®cantly facilitated if Dr is

known from another experimental or computational

method. Several computational approaches such as

®nite elements methods (see, e.g. [115]) or methods

based on beads modelling [116±118] have been

applied to predict hydrodynamic properties of

proteins with known spatial structure. Here we brie¯y

reviewed the beads model approximation for calcula-

tion of molecular diffusion tensors [116±118].

2.2.1. Properties of the diffusion tensors

The properties of the friction and diffusion tensors,

characterising coupled translational and rotational

Brownian motions of a rigid molecule of an arbitrary

shape, were formulated by Brenner [113,119]. The

hydrodynamic behaviour of the molecule is described

by the generalised friction tensor RP �6 £ 6� compris-

ing rotational JP,r �3 £ 3�; translational Jt �3 £ 3� and

coupling JP,c �3 £ 3� parts. The index P in the rota-

tional JP,r and the coupling JP,c friction tensors

means that these tensors depend on the origin P of

the molecular co-ordinate frame. In contrast, the

translational friction tensor Jt does not depend on

the origin of the molecular frame. The friction tensor

RP connects the frictional force F and torque MP with

the ¯uid velocity UP at the point P and the angular
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13Ca nuclei versus the overall rotation correlation time of rigid
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velocity v of the molecule:

F

MP

" #
� Jt J T

P;c

JP;c JP;r

24 35
|�����{z�����}

RP

UP

v

" #
: �2:14�

The friction tensor RP is connected with the general-

ised diffusion tensor DP through the generalised

Stokes±Einstein relationship:

DP;t DT
P;c

DP;c Dr

24 35
|�����{z�����}

DP

� kBT
J t J T

P;c

JP;c JP;r

24 35
|�����{z�����}

RP

21

; �2:15�

where kB is the Boltzmann constant, T is the tempera-

ture, DP,t, Dr and DP,c are translational, rotational and

coupling diffusion tensors, respectively. Brenner has

shown, that unlike the friction tensors, the rotational

diffusion tensor Dr does not depend on the origin, but

translational DP,t and coupling DP,c diffusion tensors

do.

The most important properties of the friction and

diffusion tensors are summarised below:

JP;c � JO;c 2 rOP XJ t �2:16a�

JP;r � JO;r 2 rOP XJ t XrOP 1 JO;c XrOP 2 rOP XJ T
O;c

DP;c � DO;c 1 Dr XrOP �2:16b�

DP;t � DO;t 2 rOP XDr XrOP 1 DT
O;c XrOP 2 rOP XDO;c;

where O and P denote the origins of two arbitrary

molecular frames, rOP is the vector that goes from

O to P, X means the dyadic product. The dyadic

products of 3 £ 3 tensor R and vector v of dimension

3 Ð vXR and RXv are de®ned as:

�vXR�k;l � Rk21;lvk11 2 Rk11;lvk21 �2:16c�

�RXv�k;l � Rk;l11v121 2 Rk;l21v111
;

where and k and l are cyclic indexes running from 1 to

3 (e.g. k 2 1 � 3 if k � 1; k 1 1 � 1 if k � 3�:
The rotational and translational friction tensors JP,r

and Jt are symmetric in any co-ordinate frame. The

coupling tensor JP,c is symmetric only in a unique co-

ordinate frame. The origin of this co-ordinate frame is

called the centre of resistance:

JR;c � J T
R;c: �2:17a�

The position of the centre of resistance in an arbitrary

co-ordinate frame, with the origin O is given by:

rOR �
x1

OR

x2
OR

x3
OR

0BBB@
1CCCA

�
J 22

t 1 J 33
t 2J 12

t 2J 13
t

2J 12
t J 11

t 1 J 33
t 2J 23

t

2J 13
t 2J 23

t J 22
t 1 J 11

t

0BBB@
1CCCA

21

�
J 32

O;c 2J 23
O;c

J 13
O;c 2J 31

O;c

J 21
O;c 2J 12

O;c

0BBB@
1CCCA:

�2:17b�
By analogy with the friction tensors DP,t and Dr are

always symmetric, but DP,c becomes symmetric only

in the unique co-ordinate frame with the origin

referred to as the centre of diffusion:

DR;c � DT
R;c: �2:17c�

The position of the centre of diffusion with respect to

an arbitrary origin O can be obtained from an equation

similar to Eq. (2.17b) in which Jt and JO,c are

replaced by DO,t and DO,c, respectively. In general,

the centre of resistance and the centre of diffusion

do not coincide (see, e.g. Ref. [120]).

2.2.2. Calculation of diffusion tensors using the beads

model approximation

Here we consider the beads model approximation for

calculation of the protein friction and diffusion tensors

[116±118]. In this method the rigid molecule is

modelled as a set of N spherical sources of scalar friction

otherwise called beads, characterised by the friction

constants z i�i � 1¼N�: The motion of the system of

beads is described by a system of linear equations:

Fi 1 zi

XN
j�1; j±i

Tij´Fi � zivi; �2:18�
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where Fi is the vector offorce, acting on the ith bead, vi is

the velocity of the ith bead with respect to the solvent.

The second term in the left-hand side of Eq. (2.18) refers

to hydrodynamic interactions between the beads, which

are characterised by the Oseen tensor T of dimension-

ality 3N £ 3N; composed of 3 £ 3 blocks Tij. Owing to

the hydrodynamic interactions, the internal velocity

®eld, created at the position of a friction element by

the motion of other elements, has to be added to the

external velocity ®eld. The hydrodynamic interaction

(Oseen) tensor was originally written as [119]:

Tij � 1

8phRij

I 1
Rij´Rij

R2
ij

 !
; �2:19a�

where h is the solvent viscosity, Rij is distance vector

between ith and jth beads, `´' denotes the direct product

of 3 £ 1 to 1 £ 3 matrices, I is the diagonal unit 3 £ 3

matrix. Eq. (2.19a) implicitly assumes that the bead radii

are much smaller than the distance between them. The

Oseen tensor (Eq. (2.19a)) was modi®ed for the case of

equal [121,122] and different [116] beads of non-

vanishing radii:

Tij � 1

8phRij

I 1
Rij´Rij

R2
ij

1
s 2

i 1 s 2
j

R2
ij

1
3

I 2
Rij´Rij

R2
ij

 ! !
;

�2:19b�
where si1 sj are radii of ith and jth beads respectively.

It is notable that Eq. (2.19b) is only valid in the case of

si 1 s j , Rij: For overlapped beads of equal radii s ,

corresponding off-diagonal elements of the Oseen

tensor should be replaced by [121]:

Tij � 1

6phs
1 2

9Rij

32s

� �
I 1

3R ij´Rij

32sRij

 !
: �2:19c�

In Eqs. (2.19a)±(2.19c) all vectoral and tensoral quan-

tities are written for an arbitrary co-ordinate frame,

centred at point P.

Eq. (2.18) can be solved for the forces:

Fi �
XN
j�1

�zizj�1=2Sij´vj; �2:20a�

where

S � �Qs�21 �2:20b�

Qs
ij � z21=2

i Qijz
1=2
j ; Qij � dijI 1 �1 2 dij�ziTij;

here I is the unit tensor and d ij is the Kronecker's

delta. Since Q is not symmetric when the beads

have different friction constants it is numerically

convenient to form the symmetric matrix Qs [123].

The torques Mi with respect to the origin P of the

co-ordinate frame, in which JP,c and JP,r have been

calculated, are given by:

M i � Ri £ Fi �
XN
j�1

�zizj�1=2Ri £ �Sij´vj�; �2:20c�

where Ri is the position vector of the ith friction point

with respect to P, £ means the vector product.

Using Eqs. (2.14) and (2.20a)±(2.20c) one can

derive the expressions for translational, rotational

and coupling friction tensors. Let us consider ®rst

the case of uniform translation of the particle. Assum-

ing that for all beads vi � v � UP and v� 0 one can

write Eq. (2.14) in the form: F � Ji´v and MP �
JP;c´v: The translational Jt and coupling JP,c friction

tensors are then obtained by summing over the index i

in Eqs. (2.20a) and (2.20c), respectively:

J t �
XN
i�1

XN
j�1

�zizj�1=2Sij �2:21a�

JP;c �
XN
i�1

XN
j�1

�zizj�1=2Ri £ Sij: �2:21b�

To derive an expression for the rotational friction

tensor JP,r it is convenient to consider pure rotational

motion about the origin P with angular velocity v i.e.

for all beads vi�v £ Ri. It can be shown that in this

case Eq. (2.14) reduces to F � J T
P;c´v and MP �

JP;r´v: By summing over i in Eq. (2.20c) one can get:

JP;r � 2
XN
i�1

XN
j�1

�zizj�1=2Ri £ Sij £ Rj �2:21c�

The diffusion tensors are calculated from correspond-

ing friction tensors using the generalised Stokes±

Einstein relationship (Eq. (2.15)). To obtain reliable

values of the translational diffusion rates all calcula-

tions have to be carried out in the centre of resistance

(Eq. (2.17a) and (2.17b)) co-ordinate frame [120].
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2.2.3. Representation of the molecule as an array of

beads. Boundary conditions

For calculations of molecular diffusion tensors

using the beads model approximation one needs:

(i) to represent the molecule as an array of

spherical friction elements; and (ii) to assign them

friction constants. Several methods can be consid-

ered for representation of the molecule by a set of

beads (reviewed in Ref. [124]). In relatively large

molecules the beads might correspond to the mole-

cular domains or sub-domains. The beads, corre-

sponding to the residues or atoms of the

molecule, may be selected for a more detailed

description of the molecular shape. Within a ®lling

model the volume enclosed by the molecular

surface is ®lled by beads located, e.g. in the cells

of a cubic grid superimposed onto the protein.

Since hydrodynamic friction takes place at the

surface of the molecule, it was also proposed to

arrange the small beads in a shell that describes

as closely as possible the molecular surface.

The friction constants for beads are assigned using

Stokes law. For the beads corresponding to large

regions of the protein such as domains, sub-domains

or possibly residues, the Stokes law with stick bound-

ary conditions is used. Stick boundary conditions

mean that the tangential velocity of the solvent is

zero at the surface of the diffusing object. The trans-

lational friction coef®cients for `stick spheres' is

given by:

z � 6phs; �2:22a�

where s is the sphere radius and h is the solvent

viscosity.

It was shown that to a good approximation the trans-

lational and rotational diffusion of small molecules

obey slip boundary conditions (see Refs. [125,126]

and references cited therein). `Slip spheres' possess

translational friction coef®cients equal to:

z � 4phs: �2:22b�

The atoms of molecules are also expected to obey slip

boundary conditions [125]. The friction constants for

the beads corresponding to the atoms of the molecule

may be assigned, e.g. using the accessible surface area

(ASA) model [125,127].

2.3. Practical aspects of applying hydrodynamic

calculations in NMR relaxation studies

The details and the current state of hydrodynamic

calculations using the beads model have been recently

reviewed [124]. Thus, instead of describing details of

the calculations, we focus on major complications

arising in practical applications of the beads model

for studies of protein hydrodynamics. First, the

beads model cannot account for concentration effects

due to molecular crowding (i.e. self-obstruction) and

aggregation [128,129]. Even at the limit of an in®nite

dilution, where the effects of protein±protein interac-

tion can be neglected, the results of the calculations

might be offset anyway due to ambiguity in the

protein hydration shell [124] and to electrolyte fric-

tion effects [129±132]. It became evident a long ago

that one could expect a signi®cant improvement in the

prediction of the molecular hydrodynamic properties

if the calculations are complemented by measure-

ments of some relevant parameters [124]. For the

analysis of NMR relaxation data, one usually needs

independent estimates of overall rotation correlation

times and the anisotropy of the rotational diffusion. In

this case supplementary measurements of transla-

tional self-diffusion coef®cients can be performed

[133±136]. These measurements could be helpful

both for a characterisation of the protein aggregation

and for the selection of proper parameters for hydro-

dynamic calculations.

2.3.1. Water shell in hydrodynamic calculations

Signi®cant experimental and theoretical efforts

have been aimed at understanding the solvation of

macromolecules (for recent reviews see, e.g. [137±

140]). Usually only a small number of speci®c water

binding sites with water residence times longer than

one nanosecond can be identi®ed by X-ray and NMR

protein structural studies. The residence times of

water molecules at all other sites of the protein surface

are below 0.1 ns. The properties of the solvent in the

vicinity of the protein differ, however, from those of

the bulk solvent. Calorimetric and speci®c volume

measurements provide a hydration level of 0.2±0.5 g

of water per gram of protein [141,142], which corre-

sponds approximately to one mono-layer of solvent

for globular proteins. Solvent distribution functions

obtained from X-ray diffraction [143] also indicate a
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well-de®ned ®rst solvation shell. In hydrodynamic

calculations using either beads or ®nite elements

methods it was found that usually 20±70% of water

mono-layer occupation is appropriate for reproduc-

tion of the experimental data on translational and rota-

tional diffusion, sedimentation, intrinsic viscosity, and

radius of gyration [124,127,144,145].

The parameters of the diffusion anisotropy for

globular proteins obtained from hydrodynamic calcu-

lations are almost insensitive to the choice of the shell

parameters, provided the protein has a nearly spheri-

cal shape. In our experience, any reasonable represen-

tation of the protein molecule by an array of spherical

frictional elements, reproducing the molecular shape

(e.g. 1.0 AÊ beads corresponding to all protein heavy

atoms or 3.5 AÊ beads corresponding to Ca atoms

[146]), allows one to predict the direction of principal

axes and the ratios of eigenvalues of the rotational

diffusion tensor with good accuracy.

The thickness of the solvation shell, however, has a

dramatic effect on the absolute rates of translational

and rotational diffusion. Owing to ambiguities in the

solvation shell and in the friction constants of the

beads one cannot, usually, predict the absolute values

of diffusion coef®cients with the precision required

for the analysis of the relaxation data. As indicated

in the next sections, even a single adjustable para-

meter of the molecular overall rotation can lead to

an unaffordable ambiguity in the analysis of protein

internal dynamics (see [106]). In this case it is desir-

able to have completely independent estimates of the

rotational diffusion tensor. Unfortunately, the level of

hydration varies signi®cantly for different proteins,

which is probably the main source of uncertainty in

the prediction of protein hydrodynamics [124].

To alleviate the problem, several procedures based

on similar ideas have been proposed, which use one or

several experimentally measured values to adjust the

level of hydration [124,127,144,145,147,148]. The

essence of this approach can be illustrated by the

example of a spherical particle. In this case the trans-

lational (Dt) and rotational (Dr) diffusion coef®cients

are given by Stokes formulas:

D t � kBT

6phs
Dr � kBT

8phs 3
; �2:23�

where kB and T are the Boltzman constant and

temperature, h and s are the solvent viscosity

and the radius of the particle. Provided that Dt is

obtained experimentally, the hydrodynamic radius of

the molecule, including unknown hydration shell, can

be excluded from the expression for the rotational

diffusion coef®cient:

Dr � 27p2h2D3
t

k2
BT2

: �2:24�

Similar reasoning is applicable to more sophisticated

models describing the hydrodynamics of particles of

an arbitrary shape (see, e.g. [148]). Commonly, in the

latter case the hydration level is described by a single

parameter, which is adjusted to match experimental

value(s). Recently de la Torre et al. [124] presented

results of hydrodynamic calculations for 13 globular

proteins. The authors found that using the beads

method with hydration adjustment allows one to

predict the rotational diffusion coef®cients with an

accuracy of 5±10%. In the same paper it was noted

that the residual discrepancy might be due to the

obvious fact that the experimental values used for

the hydration shell adjustment and for the evaluation

of the results of the calculations are themselves not

free from artifacts. If one puts aside instrumental

problems and assumptions inherent in a particular

experimental method (see, e.g. [106]), this statement

might address the effects of non-ideal solutions, which

are not considered in the hydrodynamic theory

described above.

2.3.2. Non-ideal solutions. Effect on the translational

and rotational diffusion

A comprehensive theory of multi-component

electrolytes containing interacting macromolecules,

which should be applied to a quantitative description

of protein diffusion, is not yet completely established,

though one can see considerable advances in this ®eld

(see, e.g. Refs. [130,131,149]). However, as it

concerns NMR relaxation for proteins, several

important ®ndings can be formulated.

At millimolar concentrations typical for protein

NMR studies, the distances between adjacent protein

molecules are of the order of the size of the molecule,

which results in so-called crowding effects on the

Brownian translational and rotational diffusion. For

non-interacting hard spheres or for charged spheres

at high ionic strength the theoretical calculations
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yield a linear attenuation of the translational diffusion

rate [150,151]:

Dt�w� � Dt�0��1 2 aw�; �2:25�

where w is the volume fraction of the protein and a �
2:0 2 3:0 is a crowding coef®cient. In a study of self-

diffusion of globular proteins Le Bon et al. [152]

observed a linear concentration dependence of Dt up

to the protein volume fraction of 10% with a < 5:5 for

all ®ve proteins considered. A higher value of a, in

comparison with those predicted for hard spheres, was

partly attributed to protein hydration, which leads to a

larger effective volume fraction. It is notable that

these data were obtained at solutions with high ionic

strength. Protein molecules with a signi®cant net

charge at low ionic strength interact through a balance

of electrostatic repulsion and attractive dispersion

forces. With increasing ionic strength, the macro-

molecular Coulombic interactions are essentially

screened, and an overall attraction between species

is expected. Thus, it was shown that lysozyme

exhibits highest diffusion rates at a moderate concen-

tration of salt. This corresponds to a compromise

between strong self-obstruction effects due to the

electrostatic repulsion at low ionic strength and the

protein aggregation at NaCl concentration exceeding

0.5 M.

Electrolyte friction refers to additional friction on a

charged colloidal particle due to its interaction with its

counter shell of ions and water molecules (see, e.g.

Ref. [130]). The effect of electrolyte friction can

contribute up to 10% of the translational diffusion

rates [130]. The effect of electrolyte friction increases

with the increase of the net protein charge and at low

ionic strength, where the Debye screening length is

high. Since the electrolyte friction does not necessa-

rily imply interaction between protein molecules, it

does not vanish at in®nite dilution. It has been

shown that the self-diffusion coef®cient Dt of lyso-

zyme extrapolated to an in®nite dilution at low salt

is ca. 10% smaller than that measured at 0.15 M NaCl

[129]. Fortunately, both the interaction among the

protein molecules, i.e. those due to long-range

molecular interactions and volume exclusion, and

the electrolyte friction, are known to be negligible

for the rotational diffusion of globular proteins (see,

e.g. Ref. [131] and references therein), provided that

the protein volume fraction does not exceed ca. 5%

(see Ref. [153]).

As the attraction between the species increases, one

faces protein aggregation, which results in a wide

dispersion of species in solution with different

molecular weights and, consequently, with

different overall rotation correlation times. This is

obvious and the most important hindrance for relaxa-

tion data analysis in terms of a particular dynamic

model [105,154±156]. Certainly, the results of hydro-

dynamic calculations based on a single de®ned

spatial structure would be completely irrelevant in

this case.

Taking into account the above mentioned compli-

cations due to non-ideal protein solutions, several

conclusions regarding the application of hydro-

dynamic calculations in NMR relaxation studies of

proteins can be formulated: (i) The beads model

provides quite accurate parameters of the rotational

diffusion anisotropy, suitable for the analysis of

relaxation data in anisotropic molecules. (ii) The

beads model cannot provide accurate absolute values

of overall rotation correlation times without reference

to additional experimental data (e.g. the protein self-

diffusion coef®cient Dt). If Dt is used for estimating

the rotational correlation times (Eq. (2.24)), one

should use the values extrapolated to in®nite dilution,

which is commonly assumed in hydrodynamic calcu-

lations. Self-diffusion should be measured at moder-

ate ionic strengths and, if possible, at the pH values

corresponding to a small net charge of the protein in

order to decrease the electrolyte friction effects. One

should also check for protein aggregation, which can

be done by measuring the relaxation rates and/or self-

diffusion coef®cient at several protein concentrations.

Even with these precautions, the contributions from

the non-ideal solution effects to the derived rotational

correlation times can be signi®cant.

3. Analysis of relaxation data in terms of molecular
motions

NMR relaxation data contain information about

overall rotational diffusion and internal motions in

macromolecules. Extraction of this information is

usually based on a particular form of the correlation

function (Eq. (1.13a)) characteristic for molecular
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dynamic processes. As has been shown in

previous sections, overall Brownian diffusion of

a rigid molecule obeys well established relation-

ships and corresponding correlation functions

(Eqs. (2.10b)±(2.12)) are parameterised by the

eigenvectors and eigenvalues of the rotational

diffusion tensor Dr. The parameters of Dr can be

inferred from the relaxation data analysis as well

as from computations (see Sections 2.2 and 2.3).

Parameterisation of the correlation function of

intramolecular motions is a much more elaborate

procedure. Intramolecular dynamics of biological

macromolecules, such as proteins, is very complex

consisting of motions of different types, time-scales

and amplitudes (see [157]). Two different approaches

should be considered when constructing a correlation

function for internal motions. First, a particular model

can be assumed for a molecular motion and the

correlation function for this type of motion is used.

Alternatively, within the framework of `model-free'

approaches one can assume a particular type of

correlation (or spectral density) function instead of a

particular type of molecular motion.

The analyses of relaxation data using different

models of molecular motions have been recently

reviewed [158]. In this type of data analysis one a

priori assumes a model of molecular motion and

uses the correlation function for this model of motion.

Examples of such motional models are wobbling in a

cone [159] and multiple site jump models [12,160].

The particular form of a correlation function may be

also derived from a computer modelling of protein

motions using molecular dynamics simulations or

normal mode analysis (see, e.g. Refs. [161,162]).

The use of motional models suffers, however, from

the possibility of over-interpretation of the relaxation

data. Indeed, the limited amount of relaxation data

and their information content often do not allow one

to distinguish between different models.

Within the framework of model-free approaches

one can construct a hierarchical set of correlation

functions depending on different numbers of para-

meters (see Ref. [163] or Refs. [164±166]), which

could eliminate the ambiguity in the selection of the

model used for relaxation data analysis. Being

extracted from the relaxation data, the parameters of

the correlation function can be interpreted assuming

different types of intramolecular motion. The draw-

back of model-free approaches is that the extracted

parameters of the correlation (or spectral density)

function are not, in general, unambiguously related

to the spatial and temporal characteristics of the actual

protein internal motions.

In ¯exible, partially unfolded or aggregated

molecules it is convenient to analyse the relaxation

data using the `spectral density function mapping'

approach [29,167]. This method requires minimal

assumptions about the protein dynamics. The

approach is based on the fact that the relaxation

rates are linear combinations of the values of the spec-

tral density function J(v ) at several characteristic

frequencies. Consequently, the values of J(v ) at

these frequencies can be extracted by solving the

system of linear equations for relaxation rates. The

extracted J(v ) values may be interpreted qualitatively

or used for further analysis in terms of a particular

model of molecular motions.

In this section we consider the methods for the

analysis of backbone 15N relaxation data in proteins

used for the characterisation of protein overall

tumbling, picosecond±nanosecond and microse-

cond±millisecond intramolecular motions. In Section

3.1 we review a general method for back-calculation

of the model parameters and their uncertainties.

Section 3.2 is devoted to the strategies and problems

of model-free relaxation data analysis. In Section 3.3

we brie¯y review J(v ) mapping. In Section 3.4 we

consider the methods for characterisation of micro-

second±millisecond time-scale motions in proteins.

The last Section 3.5 is devoted to interpretation of

NMR relaxation data using molecular dynamics

simulations and normal mode analysis.

3.1. Calculation of model parameters based on

experimental data

3.1.1. Back-calculation of model parameters and

estimation of their uncertainties

Typically, analysis of experimental data implies

back-calculation of the parameters of a particular

model from N experimental data values V
exp
i deter-

mined with uncertainties DV
exp
i : Here, model means

the theoretical dependence V th
i �z� of the data on the

set of k(k , N) model parameters z . An example of

back-calculation of the model parameters is the

approximation of peak intensities in 15N R1 or R2
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spectra recorded with different delays for relaxation

(see Section 1.4) by two-parameter exponential

functions, depending on relaxation rate and initial

peak amplitude. Another example is the calculation

of the order parameters and correlation times from

the experimental relaxation rates in a model-free

analysis.

If the uncertainties of the experimental data follow

a normal distribution, maximum likelihood estimates

of the model parameters can be obtained by minimi-

sation of the following target function:

G�z� �
XN
i�1

�V th
i �z�2 V

exp
i �2

�DV
exp
i �2

; �3:1�

where z denotes the set of adjustable parameters (see

[168]). Minimisation may be performed, e.g. using the

Levenburg±Marquardt algorithm [168]. Additional

restraints of the form:

K min2�zi 2 a; zi 2 b� if zi Ó �a; b�
0 if zi [ �a; b�

(
�3:2�

may be introduced in Eq. (3.1) to ensure that all para-

meters fall into allowed ranges (here (a,b) is the

allowed range for the parameter z i, and K is a penalty

factor for violation of the allowed region). Often, one

needs to calculate maximum likelihood estimates for

other parameters f (z) with known relationship to z ,

which can be obtained directly from the optimised

values of z .

Uncertainties in model parameters can be estimated

using Monte Carlo simulation of the distributions of

the optimised parameters [168]. For this purpose one

generates multiple pseudo-experimental data sets,

obeying normal distributions with means calculated

from optimised model parameters and standard

deviations equal to DV
exp
i : The uncertainties of the

parameters are given by the standard deviations of

the distributions of the optimised model parameters,

resulting from ®tting to the simulated data. In the case

of small data errors with normal distribution, the

uncertainties of the optimised parameters can also

be obtained from the covariance matrix of the

optimised model [168]. Using the optimised model

parameters z and the covariance matrix one can

estimate the uncertainty for other parameters f (z)

with a known relationship to z :

s 2�f� �
XN
i�1

XN
j�1

2

2zi

2

2zj

f�z�
" #

cov�zi; zj�; �3:3�

where cov�zi; zj� are the elements of the covariance

matrix.

In some cases (e.g. when the number of experimen-

tal data and model parameters is small), it is useful to

apply simple graphical procedures to determine and

visualise the permissible regions of the parameter

space [169,170]. For this purposes one draws the

con®dence regions for the experimental data in para-

meter space. The overlap of the permissible regions

for all experimental data will correspond to legitimate

values of the model parameters. It is also helpful to

generate various likelihood/con®dence contour plots,

which give direct information on the likelihood that a

particular set of model parameters is consistent with

the experimental data, using Bayesian statistics

approaches (see Ref. [171]).

3.1.2. Goodness of ®t. Model selection

During the data analysis the following questions

often arise: (i) is the particular model appropriate

for the analysis of the experimental data; and (ii)

which of the alternative models would account better

for the experimental data?

The goodness of ®t of the experimental data to a

particular model may be evaluated on the basis of

G(z) (Eq. (3.1)) in its minimum [168]. In particular,

one can simulate pseudo-experimental data with a

normal distribution with the means calculated from

the optimised model parameters and standard devi-

ations of the original experimental data DV
exp
i : The

distribution of the optimised G (z) values, resulting

from the simulated pseudo-experimental data, is

then used to estimate the probability of getting by

chance the target function (Eq. (3.1)) higher

than those obtained from least-square ®tting of the

original experimental data. This probability charac-

terises the con®dence for rejecting the model under

consideration.

If the experimental data errors are small, normally

distributed, and uncorrelated with each other, G (z) in

its minimum should correspond to a x 2 distribution

with n � N 2 k degrees of freedom, where N is the

number of experimental values, k is the number of
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adjustable model parameters. In principle, x 2 statis-

tics (see Ref. [172]) is not applicable to the non-linear

regression analysis. However, for most of the

problems considered here the critical values of G (z )

distribution calculated using Monte Carlo simulations

almost coincide with those predicted by x 2 statistics,

provided that the model parameters do not approach

their extreme values.

Commonly, the model is considered inappropriate,

if the probability of getting the target function higher

than those obtained from least-square ®tting of the

experimental data is less than 5±10%, i.e. if the

obtained target function is higher than a correspond-

ing critical value. For a large number of degrees of

freedom, i.e. greater than ca. 20±30, this critical value

is almost equal to the number of degrees of freedom.

If a set of hierarchical nested models is considered

(i.e. if the parameters of a simple model form a subset

of the parameters of a more complex model), the use

of F-statistics for the selection of an appropriated

model is very helpful (see [172]). These statistics

address the question of whether or not a reduction

of the target function obtained for the model with

the greater number of parameters is statistically

signi®cant. For the comparison of two alternative

models one can generate a normally distributed

pseudo-experimental data set with mean values

calculated from optimised parameters of a simple

model and analyse this set with the same model and

with a more complex model. The resulting optimised

values of G (z 1) and G (z 2) are used to generate the

distribution of the value F(z 1,z 2):

F�z1; z2� � n2�G�z1�2 G�z2��
�n1 2 n2�G�z2� ; �3:4�

where z 1 and z 2 denote the parameter sets for a simple

and a more complex model, respectively; n 1 and n 2

(n 1 . n 2) are the number of degrees of freedom of the

models. The generated distribution of F(z 1,z 2) is used

to estimate the probability of obtaining by chance a

given reduction of the minimised target function

(Eq. (3.1)) upon the transition to a more complex

model. This probability characterises the con®dence

for the introduction of the model with additional

parameters compared to the simpler model. For

most of the problems considered here the critical

values of the F(z 1,z 2) distributions, calculated using

Monte Carlo simulations, almost coincide with those

provided by F-statistics with n 2 and n 1 2 n 2 degrees

of freedom.

Commonly, the selection between hierarchical

nested models is based both on x 2 and F-statistics

criteria (see, e.g. Refs. [173,174]). In particular, a

more complex model is accepted, e.g. if the simpler

model is rejected based on the x 2 criterion with 90%

probability and the F-statistics criterion shows with at

least 80% con®dence that the observed reduction of

the target function cannot be obtained by chance.

3.1.3. Bayesian statistics approach for estimation of

parameters and their uncertainties

In the case of non-linear estimation problems with a

high number of parameters and experimental data (say

N, k . 20±30; N . k� it is often not possible to esti-

mate the uncertainties of the optimised model para-

meters using conventional Monte Carlo simulations.

Indeed, one would have to generate multiple data sets

corresponding to all experimental data and perform

non-linear optimisation for all data sets. One of the

possibilities in this case is to obtain some estimates of

the parameter uncertainties from the covariance

matrix of the optimised model. Another possibility

is to use a Bayesian statistics approach (see [175]

and references cited therein), allowing Monte Carlo

sampling to be performed in the parameter space

instead of the data space. This strategy is computa-

tionally ef®cient since it allows one to avoid repeated

multiple non-linear optimisation. The approach uses

the fact that the joint probability density P�zuVexp� of

getting model parameters z at a given Vexp is propor-

tional to the product of likelihood of the data P(Vexpuz)

and the prior probability of the parameters P(z)

(Bayes theorem):

P�zuVexp� , P�Vexpuz�P�z�; �3:5�
where z and Vexp denote the parameter and data sets,

respectively. The likelihood of observing the data set

Vexp given the particular values of model parameters z
is given by:

P�Vexpuz� �
YN
i�1

1��������������
2p�DV

exp
i �2

q exp 2
�V th

i �z�2 V
exp
i �2

2�DV
exp
i �2

" #
:

�3:6�
The prior probability of the parameters P(z) is

assumed to be equal to 1 if the model parameters lie
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in the allowed ranges and 0 otherwise. Based on

Monte Carlo sampling of the parameter space and

using Eqs. (3.5) and (3.6) one can estimate the joint

probability density for any subset of the parameter set

z , comprising l�l , k� parameters z1;¼; zl :

P�z1¼zluV
exp� �

Z
P�zuVexp� dzl11¼dzk: �3:7�

This probability density may then be used for the

estimation of parameter uncertainties as well as for

the generation of various likelihood/con®dence maps.

The Bayesian statistics approach is especially help-

ful if the experimental data and the model parameters

can be grouped in such a manner that the data in each

group depend only on a corresponding group of para-

meters except for a small number of global parameters

[175]. The example of such a problem is ®tting of the

relaxation data for multiple nuclei in a protein by

simultaneous optimisation of the parameters of

molecular overall rotation (common for all nuclei)

and the parameters of intramolecular motions

(assumed to be different for different nuclei). In this

case the likelihood (Eq. (3.6)) is calculated for each

group of data separately, using Monte Carlo simula-

tions for the parameters of the corresponding group.

The resulting likelihood for the complete data set is

then obtained as a product of likelihoods for all data

groups. This procedure saves a considerable amount

of computational time.

It is worthwhile to note that the Bayesian statistics

approach is also expected to be useful for the problem

of selection between hierarchical nested models

[175].

3.2. Model-free analysis of relaxation data

3.2.1. Original formulation of the model-free

approach

The most popular method for the analysis of back-

bone 15N relaxation data in proteins is the model-free

approach proposed originally by Lipari and Szabo

[164,165] and extended by Clore et al. [166]. The

model-free approach implicitly uses the assumption

that the overall and internal molecular motions are

independent and that the correlation function C(t)

can be represented as a product of internal and overall

parts (see Eq. (2.13)) even in the case of anisotropic

molecular reorientation. An exact form of the correla-

tion function of molecular overall rotation CO(t),

corresponding to either isotropic (Eq. (2.12)) or aniso-

tropic (Eqs. (2.10b)±(2.11c)) diffusion, is used. The

approach does not contain any assumption concerning

the physical nature (model) of the intramolecular

motion. Instead, it postulates a particular form of the

correlation function of the internal motions CI(t). The

parameters of CI(t), extracted using least squares

®tting of relaxation data (see Section 3.1), are

assumed to be the quantities of model-independent

signi®cance, which may later be related with spatial

and temporal measures of intramolecular motions

within the frame of different physical models.

Lipari and Szabo [164,165] proposed to use a

single-exponential approximation for CI(t):

CI�t� � S2 1 �1 2 S2� e2t=te ; �3:8a�
where S is the quantity known as the generalised

order parameter, t e is the effective correlation time.

The corresponding spectral density function J(v ) is

given by the cosine Fourier transform of the correla-

tion function C�t� � CO�t�CI�t� (Eq. (1.13b)). In the

case of isotropic overall rotation J(v ) is given by:

J�v� � S2tR

1 1 �vtR�2
1
�1 2 S2�t 0e
1 1 �vt 0e�2

; �3:8b�

where t 021
e � t21

R 1 t21
e : In the more general case of

anisotropic overall rotation J(v ) is given by:

J�v� �
X2

h�2 2

ch
S2th

1 1 �vth�2
1
�1 2 S2�te;h

1 1 �vte;h�2
" #

;

�3:8c�
where t21

e;h � t21
h 1 t21

e ; th are given by Eq. (2.10c)

(see also Table 3), ch are given by Eq. (2.10d). For a

wide range of intramolecular dynamic processes one

can use Eq. (3.8a) as an approximation for the actual

correlation function Cm
I �t� if S2 and t e are given by:

S2 � Cm
I �1�

�
Z

dF1

Z
dF2P�F1�P�F2�P2�mM�F1�mM�F2��

�3:9a�

te�1 2 S2� �
Z1

0
�Cm

I �t�2 S2� dt; �3:9b�

where F 1 and F 2 are the polar angles describing the
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orientation of the relaxation relevant unit vector mM in

the molecular co-ordinate frame (see Eq. (2.13)),

P(F 1) and P(F 2) are equilibrium probability densities

for F 1 and F 2. From Eq. (3.9a) it is seen that the order

parameter S2 contains no information about the time-

scale of dynamics; it is rather a measure of the spatial

restriction of the internal motions. The allowed range

for the order parameter is 0 # S 2 # 1; S2 � 1 for

completely restricted internal motions; S2 � 0 for

unrestricted isotropic internal motion.3 The effective

correlation time t e (Eq. (3.9b)), however, depends

both on the rates of intramolecular motions and on

the spatial nature of the motions. The dependencies

of 15N and 13C R1, R2 and NOE on S2 and t e, calculated

using the model-free spectral density function for

an isotropic molecule (Eq. (3.8b)) are shown in

Fig. 6.

Lipari and Szabo [164,165] showed that for differ-

ent models of the internal motions, a single-exponen-

tial approximation for CI(t) (Eq. (3.8a)) with S2 and t e

given by Eqs. (3.8a) and (3.8b) provides almost exact

relaxation rates if: (i) the internal motions are much

faster than the molecular overall rotation �te p tR�;
and (ii) the internal (but not overall) motions are in the

extreme narrowing limit �vte p 1�: For 15N nuclei at

9.4±18.8 T this holds if t e , 50±100 ps and

tR . 1 ns.

In the limiting case of in®nitely fast internal

motions �te ! 0� the second term in Eqs. (3.8b) and

(3.8c) for J(v ) may be neglected. The resulting

expressions for J(v ) do not depend on t e. Thus, the

relaxation rates contain information only about spatial

restriction of the fast internal motions without detailed
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information about their time-dependence. In the limit-

ing case of slow internal motions �te q tR� Eqs.

(3.8b) and (3.8c) for J(v ) is reduced to J(v ) for

pure rotational motion, obtained by substituting of

S 2 � 1 in Eqs. (3.8b) and (3.8c). Thus, slow motions

do not affect the relaxation rates and cannot be

detected by relaxation measurements (if these motions

do not modulate the isotropic chemical shift of the

nucleus).

If the internal motions are not in the extreme

narrowing limit one can construct successively better

approximations for the correlation function of intra-

molecular motions, consisting of a growing number of

exponential terms. In particular, Clore et al. [166]

proposed a two-exponential correlation function

CI�t� � S 2 1 Af e2t=tf 1 As e2t=ts with S 2 1 Af 1
As � 1; where t f and t s are correlation times for

fast and slow components, respectively. When t f

and t s differ by at least one order of magnitude

�tf p ts�;CI�t� reaches an intermediate plateau

value S 2
f � 1 2 Af : In this case the correlation

function CI(t) is given by:

CI�t� � S 2 1 �1 2 S 2
f � e2t=tf 1 �S 2

f 2 S 2� e2t=ts :

�3:10a�
The value of Sf may be regarded as an order parameter

of fast internal motions. If it is assumed that fast

motions are axially symmetric and independent of

slow motions, the generalised order parameter S2 is

given by S 2 � S 2
f S 2

s ; where the value of Ss may be

regarded as the order parameter of the slow motion. In

terms of S 2
f and S 2

s the correlation function (Eq.

(3.10a)) is written as:

CI�t� � S 2
f S 2

s 1 �1 2 S 2
f � e2t=tf 1 S 2

f �1 2 S 2
s � e2t=ts :

�3:10b�

In the case of isotropic overall rotation the corre-

sponding spectral density function is given by:

J�v� � S 2
f S 2

s tR

1 1 �vtR�2
1
�1 2 S 2

f �t 0f
1 1 �vt 0f�2

1
S 2

f �1 2 S 2
s �t 0s

1 1 �vt 0s�2
;

�3:10c�

where t 021
f � t21

R 1 t21
f and t 021

s � t21
R 1 t21

s :

For anisotropic overall rotation J(v ) has the form:

J�v� �
X2

h�2 2

ch

"
S 2

f S 2
s th

1 1 �vth�2
1
�1 2 S 2

f �tf;h

1 1 �vtf;h�2

1
S 2

f �1 2 S 2
s �ts;h

1 1 �vts;h�2
#
; �3:10d�

where t21
f;h � t21

h 1 t21
f ; t21

s;h � t21
h 1 t21

s ; th are

given by Eq. (2.10c) (see also Table 3), ch are given

by Eq. (2.10d). The `extended' form of CI(t) (Eq.

(3.10b)) is often required to analyse R1, R2 and NOE

data when slow internal motions are not in the

extreme narrowing limit. An example of such a situa-

tion is shown in Fig. 7. In the limiting case of t f! 0

the second term in Eqs. (3.10c) and (3.10d) for J(v )

can be neglected. The resulting form of the spectral

density function depends on three parameters charac-

terising intramolecular motions: S2
f ; S

2
s and t s.

3.2.2. Conventional model-free data analysis

A typical set of 15N relaxation data consists of

longitudinal R1 and transverse R2 relaxation rates

and 15N{1H} NOE measured at one or several

magnetic ®elds (Section 1.4). For the analysis of

these data the theoretical expressions for relaxation

rates (or models for data analysis) are constructed

based on the different spectral density functions

J(v ) corresponding to the different forms of CO(t)

(Eqs. (2.10b)±(2.12)) and CI(t) (Eqs. (3.8a) and

(3.10a)). Commonly used forms of CO(t) and CI(t)

are summarised in Table 4. The models for the

relaxation data analysis should also account for

the contribution of the conformational exchange

in the microsecond±millisecond time-scale to

transverse relaxation rates. Usually this is done

by addition of an adjustable term Rex to the

predicted transverse relaxation rates. For relaxa-

tion data recorded at one magnetic ®eld strength

the use of an adjustable exchange term corre-

sponds to the exclusion of R2 data from the data

analysis. If the data are measured at several

magnetic ®elds and the exchange is fast [177]

the Rex term can be parameterised by a single

parameter, since the exchange line broadening is

proportional to the square of the magnetic ®eld

(see Section 1.3). Usually relaxation data are

interpreted with the increasing complexity of
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models of the spectral density functions. The hier-

archy of models used for relaxation data analysis

is shown in Fig. 8.

The conventional strategies for the model-free

analysis of 15N relaxation data are described in

[50,173,178]. The analysis includes two main

steps:

1. Selection of the model and determination of the

parameters of molecular overall rotation.

2. Selection of the model and determination of the

parameters of the correlation function of inter-

nal motions CI(t) for each 15N nucleus.

Additionally, the analysis may include re-optimi-

sation of the parameters of CO(t) and CI(t) (see,

e.g. [50,51]). These main steps of the model-free

relaxation data analysis are discussed below in

detail.

3.2.2.1. Characterisation of molecular overall rota-

tion. Most commonly, the simplest isotropic form of

the overall rotation correlation function CO(t) (Eq.

(2.12)), depending on the single parameter tR, is

adopted. Several methods for estimating tR can be

considered. Usually, it is assumed that intramolecular

motions for most 15N nuclei in a protein are in the

extreme narrowing limit. In this case an initial guess

of tR is obtained from the R2/R1 ratio [49,178]. Under

the conditions t e , 100 ps and tR . 1 ns the R2/R1

ratio is a monotonic function of tR, essentially inde-

pendent of the parameters of the internal motions. The

tR value is usually determined either from the mean

R2/R1 ratio for the set of 15N nuclei [50,178], by aver-

aging tR obtained from the individual R2/R1 ratios for

a set of 15N nuclei [51], or by simultaneous optimisa-

tion of the R2/R1 ratios for the set of 15N nuclei [179].

The 15N nuclei with R2/R1 ratios substantially higher

or lower than the mean value (e.g. outside one stan-

dard deviation) are usually excluded from the set used

for the tR calculation [178]. The nuclei with high R2/

R1 ratios are presumably subjected to conformational

exchange in the microsecond±millisecond time-scale.

The residues with low R2/R1 are involved in slow sub-

nanosecond±nanosecond motions. Low 15N{1H}

NOEs (e.g. ,0.6) can also be used to exclude 15N

nuclei involved in extensive sub-nanosecond motions

from the set used for the tR calculation [50]. Alterna-

tively, tR can be obtained as an adjustable parameter

in simultaneous ®tting of the relaxation data for the set

of 15N nuclei, assuming a particular form of CI(t)

[78,148,180±183].

The isotropic approximation for the molecular

overall rotation often appears to be inappropriate
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Fig. 7. Dependence of (a) 15N{1H} NOE, (b) 15N R1, (c) 15N R2 on

the effective correlation time t e for internal motions calculated

using a `simple' (Eqs. (3.8a)±(3.8c)) and an `extended' (Eqs.

(3.10a)±(3.10d)) form of CI(t). Bold curves correspond to the single

internal motion: S2 � 0:7; thin curves correspond to the motions in

two distinct time-scales: S2
f � 0:8; tf � 0 and S2

s � 0:875; ts �
te �S2 � S2

f S2
s � 0:7�: The curves were calculated for 14.1 T ®eld

assuming isotropic molecule with tR � 6:0 ns: It is seen that in the

case of internal motions occurring in a two distinct time-scales the
15N{1H} NOEs may substantially exceed the values, expected from
15N R1 and R2 assuming the simple model-free formula (Eq. (3.8a)±

(3.8c)).



and results in a serious misinterpretation of the relaxa-

tion data [77,85,105] (see below). In this case one

needs an anisotropic form of the overall rotation

correlation function CO(t) (Eqs. (2.10b)±(2.11c)).

The correlation function CO(t) for any vector in a

molecule of arbitrary shape may be calculated if the

rotational diffusion tensor Dr of the molecule is

known. In general, Dr is characterised by six indepen-

dent values (Table 4) Ð its principal components

Di�i � x; y; z� and Euler angles a , b , g characterising

the directions of its principal axes in the reference

molecular frame. In some cases it is convenient to

use another set of values instead of Di�i � x; y; z�;

i.e. tR � 1=�2Tr�Dr��; Dx/Dz, and Dy/Dz or tR, 2Dz/

(Dx 1 Dy) (anisotropy parameter), and 3/4(Dy 2 Dx)/

(2Dz 2 (Dy 1 Dx)) (rhombicity parameter). In the case

of an axially symmetric anisotropic molecule, Dr is

characterised by four independent values (Table 4).

Several approaches can be used to derive Dr from

the relaxation data. Under the condition that internal

motions are in the extreme narrowing limit

(t e , 100 ps) and all the correlation times of the

anisotropic correlation function CO(t) (Eqs.

(2.10b)±(2.10d)) are relatively long (th . 1.0 ns),

Dr can be estimated from the 15N R2/R1 ratios for

the set of 15N± 1H vectors, representatively sampling
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Fig. 8. Hierarchy of the models used for the analysis of the backbone 15N relaxation data. Each model describes a theoretical dependence of the

relaxation rates on the parameters of CO(t), CI(t) (see Table 4) and the adjustable exchange term Rex. The arrows denote the transitions from

simple to more complex models. Here and below the models are referred to by: (i) parameters of CI(t); (ii) type of overall rotation; and (iii)

adjustable exchange term. The following abbreviations are used: Is. Ð isotropic; Ax. Sym. Ð axially symmetric; Anis. Ð anisotropic; Exch.

Ð exchange. The models form a hierarchical nested set. Namely, the parameters of simpler models are a subset of the parameters of more

complex models. The simpler models can be obtained from more complex model if the additional parameters of the complex model are set to

their limiting values (i.e. 0 for Rex and correlation times, 1.0 for order parameters).

Table 4

Correlation functions and their adjustable parameters. (S, Sf, Ss are the generalised order parameter and order parameters for fast and slow

motions: t e, t f and t s are correlation times of fast and slow motions, respectively; Di, i� x, y, z are principal components of the rotational

diffusion tensor Dr; D' � Dx � Dy and Dk � Dz; a , b , and g are Euler angles de®ning the orientation of the molecular frame where Dr has

diagonal form with respect to the reference molecular frame. The effective overall rotation correlation time for the anisotropic molecule is

de®ned as tR � 1=�2Tr�Dr���

Type Equation Model parameters Citation Description

CI(t) 3.8a S2, �te ! 0� [164] Very fast internal dynamics

CI(t) 3.8a S2, te [164] Picosecond internal dynamics

CI(t) 3.10b S 2
f ; S

2
s , t s, �tf ! 0� [166] Very fast internal dynamics and slow sub-nanosecond

± nanosecond motions

CI(t) 3.10b S 2
f ; S

2
s , t s, t f [166] Picosecond internal dynamics and slow sub-nanosecond

± nanosecond motions

CO(t) 2.12 tR e.g. [164] Isotropic overall tumbling

CO(t) 2.11 tR, Dk/D', a , b [107, 108] Tumbling of axially-symmetric anisotropic molecule

CO(t) 2.10 tR, Dx/Dz, Dy/Dz, a , b , g [107, 108] Tumbling of asymmetric anisotropic molecule



all spatial directions. The parameters of the diffusion

tensor are calculated by the least-square ®tting of

the R2/R1 ratios for the set of 15N± 1H vectors

[184,185] or by ®tting local diffusion constants

(6tR,i)
21, where tR,i is obtained from R2/R1 ratio of

ith 15N nucleus [186,187]. In the latter method,

referred to as the local diffusion approach, the diffu-

sion tensor Dr is obtained as a least square solution

of the equations:

�6tR;i�21 � mT
i AQA21mi; �3:11�

where mi is the unit vector pointed along the ith NH

in the reference molecular frame, A is the transfor-

mation matrix relating the reference molecular

frame and the frame where Dr has diagonal form,

and Q is a diagonal matrix with eigenvalues

(Dx 1 Dy)/2, (Dx 1 Dz)/2, (Dy 1 Dz)/2. Using the

above methods the parameters of Dr have been esti-

mated in numerous 15N relaxation studies of proteins

(see, e.g. [77,85,184±192]). In principle, one can

use models of different complexity for Dr Ð isotro-

pic, axially symmetric and asymmetric (see, e.g.

[77,85,190]). One can select between the models

based on the values of the target function (Eq.

(3.1)) obtained during ®tting of Dr (see Section

3.1). It was noted, that if the molecule is essentially

asymmetric, use of the axially symmetric model for

Dr might result in two minima of the target function,

corresponding to prolate and oblate representations

of the system [190,193].

The calculation of Dr using R2/R1 ratios is valid only

in the case of extremely fast intramolecular dynamics.

Generally, R2/R1 ratios can be signi®cantly biased by

intramolecular motions. Thus, the most rigorous way

for determination of Dr seems to be treatment of the

parameters of anisotropic overall rotation as global

adjustable parameters during simultaneous ®tting of

the relaxation data for multiple 15N nuclei, assuming a

particular form of CI(t) and the anisotropic CO(t)

[78,148,182]. It is worth noting that even this proce-

dure might fail if most of the molecule is involved in

extensive nanosecond time-scale internal motions

with characteristic times close to tR. In this case the

parameters of rotational anisotropy become coupled

with the parameters of the extended form of CI(t)

[166] during ®tting of the relaxation data.

Usually the ratios of principal components and

directions of principal axes of Dr, derived from 15N

relaxation data, correspond well to those obtained

from the hydrodynamics calculations (Sections 2.2

and 2.3) (see Fig. 9). Therefore, it is convenient to

®x some parameters of anisotropic overall molecular

motion to the values obtained from hydrodynamic

calculations.4 In particular, one can ®x up to ®ve

parameters including Dx/Dz, Dy/Dz, a , b , g . As has

been noted in the previous sections, hydrodynamic

calculations do not provide correct estimates of tR.

Thus, tR always has to be adjusted. Results of hydro-

dynamics calculations have been reported in several
15N relaxation studies of proteins [78,146,148,184,

188±190,194].

3.2.2.2. Characterisation of intramolecular motions.

Provided some reasonable approximation of the over-

all rotational diffusion has been chosen, one can
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Fig. 9. Surface presentation of azurin (our unpublished results) with

principal axes of two diffusion tensors Dr obtained from hydrody-

namic calculations (x, y, z frame) and from the ®tting of the relaxa-

tion data (x 0,y 0,z 0 frame). Both tensors are almost axially symmetric

along their z-axes. The angle zz 0 is 188.

4 Note that characterisation of the rotational anisotropy using the

molecular inertia tensor is formally incorrect in the case of

Brownian rotational diffusion.



proceed with the data analysis for individual 15N

nuclei. The data analysis is performed as described

in Section 3.1 with a gradual increase of the complex-

ity of the model (see Fig. 8; Table 4). The maximum

likelihood estimates for the parameters of CI(t) and for

the exchange term Rex are obtained by minimisation of

the target function (Eq. (3.1)), where the index i runs

over the relaxation data for the particular 15N nucleus.

The uncertainties of the model parameters are esti-

mated either using extensive Monte Carlo simulation

or from the covariance matrix of an optimised model

(Section 3.1). The simplest one-parameter (S2) model

is applied ®rst. More complex two-parameter (S2, t e)

and (S2, Rex) models and, subsequently, three-para-

meter (S2, t e, Rex) and �S2
f ; S

2
s ; ts� models (and so on)

are used if the simpler models are rejected based on

the x 2 criterion and if the F-test con®rms the signi®-

cance of reduction of the target function under the

transition to the more complex model. The analysis

proceeds until a model providing a reasonable

description of the relaxation data is found. This statis-

tical protocol was ®rst proposed for the analysis of the

relaxation data in the studies [173,174].5

Numerous 15N relaxation studies of proteins using the

described strategy have shown that most of the globular

proteins in native states are quite rigid, with relatively

fast (t e , 100 ps) and highly restricted �S2 �
0:7 2 0:9� intramolecular motions of the backbone

NH vectors (see, e.g. [195,196] and references cited

therein). However, recent theoretical developments

[106], con®rmed by experimental work [78,148], reveal

that the conventional model-free protocol does not

provide an unambiguous description of protein

dynamics due to the assumptions commonly adopted

during the data analysis. Thus, one cannot exclude alter-

native interpretations of the relaxation data (see below).

3.2.3. Problems of model-free data analysis

The ambiguity of the conventional model-free data

analysis mainly stems from various assumptions

commonly made at the different stages of the analysis.

If some of these assumptions are not valid, one can

expect serious misinterpretations of the relaxation

data. In particular, one should always account for

the following potential sources of errors in the relaxa-

tion data analysis:

1. Commonly, it is assumed that molecular overall

rotation is isotropic. Erroneously neglecting the

anisotropy of molecular overall rotation can

hamper the correct data analysis [85,105].

2. The conventional methods for characterisation of

molecular overall rotation (either isotropic or

anisotropic) a priori imply that intramolecular

motions for most of protein 15N± 1H groups are

fast (t e , 100 ps). This assumption is implicit if

the tR or local correlation times tR,i (see Eq.

(3.11)) are calculated from R2/R1 ratios or adjusted

during ®tting of relaxation data using the simple

(S2) or (S2, t e) models of CI(t) (Table 4; Fig. 8). If

this assumption does not hold, serious misinter-

pretations of the relaxation data are expected

[106].

3. Usually the parameters governing relaxation of a
15N nucleus (namely, 15N CSA and 15N± 1H

distance) are kept ®xed at predetermined values,

assumed to be the same for all 15N nuclei in the

protein. Inconsistency between actual and

assumed values of these parameters might result

in errors in the subsequent data analysis (see, e.g.

[78,85,197]).

4. From the very beginning, the model-free approach

assumes that intramolecular motions are indepen-

dent of molecular overall rotation. In the case of

unfolded or partially unfolded states of proteins

this assumption is unlikely to hold.

5. Conventional model-free protocols implicitly

assume that the protein does not aggregate at

concentrations typical for NMR relaxation studies.

If the protein aggregates i.e. if considerable frac-

tions of monomers, dimers and higher aggregates

are present in the protein solution at the same

time, the model-free analysis of relaxation data

becomes impossible (or at least signi®cantly

more complicated) [105,156]. A strong indication

of protein aggregation is the dependence of 15N

relaxation rates on protein concentration and

apparently high values of order parameters

obtained from regular data analysis.

Below we consider some of the mentioned problems

in more details.
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one magnetic ®eld. Therefore, the maximal number of adjustable
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3.2.3.1. Anisotropic molecular tumbling. The ques-

tions of what degree of rotation anisotropy can be

neglected in 15N± 1H NMR dynamic studies of proteins

and what misinterpretations of the relaxation data are

expected due to neglection of the rotation anisotropy

were addressed by Schurr et al. [105]. We repeated

some model calculations performed in this work and

describe some recipes on how to cope with anisotropic

molecules.

Model calculations (our unpublished results) for

molecules with fast internal dynamics (t e , 100 ps)

show that a multi-exponential anisotropic rotation

correlation function of an arbitrary 15N± 1H vector

(Eqs. (2.10b)±(2.11c)) can be well approximated by

one exponent depending on the local correlation time

tR,i obtained from the R2/R1 ratio of the 15N nucleus

(Fig. 10). Order parameters S2 and correlation times t e

originating from the use of an isotropic form of CO(t)

(Eq. (2.12)) with a correlation time tR,i almost exactly

reproduce the values obtained with the exact aniso-

tropic expression for CO(t). Therefore, for moderately

anisotropic molecules with fast internal dynamics one

can analyse the relaxation data with the isotropic form

of CO(t) (Eq. (2.12)) using local correlation time tR,i

estimated from individual R2/R1 ratios. In this case

each 15N nucleus or subset of 15N± 1H vectors having

similar spatial orientations (e.g. NH's of an a-helix)

are considered separately.

For molecules with fast internal dynamics the

errors associated with neglect of the rotation aniso-

tropy result from averaging of R2/R1 ratios or local

tR,i, commonly used for the re®nement of overall rota-

tion correlation time. For residues with the apparent

tR,i smaller than the `re®ned' tR, one should expect an

underestimated S2 and an overestimated t e (Fig. 10),

or even wrong selection of the model for data analysis

(Fig. 8; Table 4), favouring a �S2
f ; S

2
s ; ts�model assum-

ing sub-nanosecond ± nanosecond motions [105]. For

the residues with tR,i larger than the `re®ned' tR, one

should expect an overestimated S2 and an underesti-

mated t e (Fig. 10), or wrong selection of the model for

data analysis, favouring models assuming conforma-

tional exchange in the micro millisecond time-scale

[85]. The effects of motional anisotropy can be safely

neglected for molecules with rotation anisotropy

0:8 , Dk=D' , 1:2 [105].

3.2.3.2. Problem of tR selection. The conventional

procedure for estimation of tR from R2/R1 ratios

assumes that intramolecular motions for most of

the protein 15N nuclei are fast (t e , 100 ps).

However, if the major part of protein is involved in

extensive nanosecond time-scale intramolecular

motions the value of tR obtained in this way will

be underestimated [106,183] (Fig. 11). The under-

estimated tR when used in further calculations

leads to overestimated order parameters and under-

estimated correlation times of the internal motions

and might result in apparent consistency of the

relaxation data with the simplest models for data

analysis (Fig. 8; Table 4), assuming fast intramole-

cular motions. An example of such a situation is

shown in Fig. 12 [183]. The target function (Eq.

(3.1)) obtained from ®tting of the relaxation data

for an 15N nucleus involved in extensive nanosecond

motions using a simple (S2, t e) model of CI(t) exhi-

bits two distinct minima, with depths depending on

the tR value. The ®rst arti®cial minimum at large S2

and picosecond t e values becomes global when an
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underestimated tR obtained from R2/R1 ratio is

utilised. The second minimum at smaller S2 and t e

in the nanosecond range becomes global when the

correct tR is used. Thus, the ambiguity of the tR

selection is tightly coupled with the discrimination

between the models of intramolecular motions and

often has no straightforward solution.

Usually, the set of 15N nuclei used for tR estimation

is selected according to criteria of high 15N{1H} NOE

and R2/R1 ratio close to a mean value. The additional

criterion of involvement of a 15N± 1H group in the

hydrogen bonding network of a regular secondary

structure may also be applied [198]. These criteria

are expected to ensure that intramolecular motions

for selected 15N nuclei are fast and relatively

restricted. However, neither these criteria nor statisti-

cal criteria implemented in the standard model selec-

tion protocol (see above) can detect the presence of

collective nanosecond motions with correlation times

t s longer than 1.5±2.0 ns, if the relaxation data are

recorded at a single magnetic ®eld strength. In the

case of ts . 1:5±2:0 ns the 15N{1H} NOEs have

relatively high positive values and approach their

upper theoretical limit with increasing t s (Fig. 13b).

Deviation of the R2/R1 ratio from a mean value cannot

help in the detection of nanosecond motions if most of

the 15N± 1H vectors are involved in these motions.

Model calculations [106] show that in the case of ts .
1:5±2:0 ns the simplest (S2) or (S2, t e) models of CI(t)

(Table 4), allowing estimation of tR from R2/R1 ratios,

cannot be rejected based on the values of target func-

tions G (S2) or G (S2, t e) (Eq. (3.1)) (Fig. 13a).

Relatively short (t e)app obtained from data ®tting

with the (S2, t e) model also does not contradict the

choice in favour of models of fast internal motions

(Fig. 13d). It follows that the regular protocol of the

relaxation data analysis fails to detect the collective

nanosecond time-scale internal motions with charac-

teristic times longer than 1.5±2.0 ns. It is notable,

however, that for relatively long t s the order para-

meters (S2)app originating from erroneously chosen

(S2) or (S2, t e) models of CI(t) might be regarded as

rough estimates of actual order parameters of fast

intramolecular motions ± S 2
f (Fig. 13c).
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Fig. 11. Apparent overall rotation correlation time, �tR�app; calculated from the R2/R1 ratio as a function of the correlation time of the internal

motions, t s. Relaxation rates R1 and R2 were simulated for a spherical molecule with tR � 6 ns using �S2
f ; S

2
s ; ts� model of CI(t) with S2

f � 0:9

(Fig. 8; Table 4). The three sets of curves from top to bottom correspond to three values of order parameters S2
s � 0:95; 0:8; and 0:6;

respectively. In each set dependencies are shown for four magnetic ®elds: 9.4, 11.7, 14.1 and 17.6 T corresponding to ®lled circles, open

circles, ®lled squares, and open squares respectively. (a) Data for the 15N± 1H vector. (b) Data for the 13Ca± 1H vector. Reproduced from [106]

with kind permission from Academic Press.



Again, if most of the protein 15N nuclei are

involved in a uniform conformational exchange

process in the microsecond time-scale, the value of

tR obtained from the R2/R1 ratio for the set of 15N

nuclei is expected to be overestimated. In principle,

subsequent use of the overestimated tR might result in

disappearance of the exchange term and the erroneous

accepting of a simple model of fast intramolecular

motions. As in the case of collective nanosecond

time-scale motions detection of such cases based on
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Fig. 12. Target function G(S2, t e) (x 2) versus S2 and t e, re¯ecting the correspondence of simulated relaxation data to the simple (S2, t e) model

of CI(t) and isotropic CO(t) (Table 4) at different tR: 6.25, 7.0, 7.5, 8.0 ns (plots a, b, c, d, respectively). The relaxation data: 15N R1,

R2 and 15N{1H} NOE at 14.1 T magnetic ®eld were simulated for a spherical molecule with actual tR � 7:0 ns exhibiting motions in

sub-nanosecond time-scale with S2
f � 0:9; S2

s � 0:8; ts � 0:8 ns: Note, two distinct minima of the target function are present in all

cases. Reproduced from [183] with kind permission from Kluwer Academic Press.
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Fig. 13. Results of the formal model-free analysis of the relaxation data simulated for a molecule exhibiting internal motions in the nanosecond time-scale. Relaxation data (15N R1,

R2 and 15N{1H} NOE at 14.1 T magnetic ®eld) were simulated for a spherical molecule with tR � 6 ns using the �S2
f ; S

2
s ; ts�model of CI(t) (Table 4) with S2

f � 0:9 and S2
s of 0.6 and

0.8 (®lled and open signs in plots, respectively). The following uncertainties were assumed for simulated data 2 2% for R1, R2 and 0.03% for NOE. Data were ®tted using the (S2,

t e) and (S2) models of CI(t) (squares and circles respectively) and isotropic CO(t). The apparent (tR)app obtained from R2/R1 ratios were used in the ®t. All values are plotted against

the correlation time for nanosecond internal motions, t s. (a) Logarithm of G (S2, t e) (x 2) loss function (Eq. (3.1)). Five percent probability critical levels for the (S2, t e)

and (S2) models are shown by horizontal dashed and solid lines respectively. (b) Simulated 15N{1H} NOE values (open and ®lled circles). Maximal NOE for exact tR

and apparent (tR)app are shown by solid dashed lines, respectively. (c) Apparent order parameters (S2)app. Note that for the long t s order parameters (S2)app almost exactly

reproduce the exact value of S 2
f � 0:9: (d) Apparent correlation times of the internal motions (t e)app. Reproduced from [106] with kind permission from Academic Press.



relaxation data recorded at one magnetic ®eld strength

is complicated.

Relaxation data measured at several magnetic ®elds

provide a straightforward way for discriminating

between models of intramolecular motions (Fig. 8;

Table 4) and, therefore, for the selection of a correct

tR value. In this case the models are well distin-

guished by the values of the target function (Eq.

(3.1)) if tR is adjusted simultaneously with the para-

meters of internal motions [78,148,180,199].

Additionally, the ®eld dependence of the apparent

tR derived from R2/R1 ratios provides a strong indica-

tion on microsecond±millisecond conformational

exchange or nanosecond time-scale motions [106].

In the former case the apparent tR increases with

increasing ®eld strength. In the case of nanosecond

motions the apparent tR will be higher at lower ®eld

(Fig. 11). In fact, an increase of tR obtained from R2/

R1 ratios with decreasing magnetic ®eld strength was

observed in several 15N relaxation studies of proteins

(Table 5).

3.2.3.3. Uncertainties in parameters governing 15N

relaxation. The interpretation of 15N relaxation data

requires the knowledge of 15N CSA and the 15N± 1H

distance rNH. During model-free analysis of relaxation

data these values are usually kept ®xed at predeter-

mined values (e.g. 2160 ppm for 15N CSA and 1.02 AÊ

for rNH), assumed to be the same for all 15N nuclei in

protein, whereas the results of numerous works

suggest that these parameters can vary for different

positions in a protein molecule (see Section 1.5). In

addition, one should keep in mind that the symmetry

axis of the 15N shielding anisotropy tensor is not colli-

near with the NH vector (this is important for strongly

anisotropic molecules and at high magnetic ®elds

[200]) and that the shielding anisotropy tensor, strictly

speaking, is only approximately axially symmetric.

The effects of uncertainties in 15N CSA are of parti-

cular concern at very high ®eld strengths, since the

contribution of relaxation due to the CSA mechanism

increases as the square of the ®eld.

One can suggest that inconsistency between actual

and assumed values of 15N CSA and rNH results in a

substantial bias of the adjusted model parameters

during ®tting of the relaxation data [78,85,104,197].

In principle, one can avoid these errors by considering
15N CSA and/or rNH as an adjustable parameters for

each 15N nucleus in a protein, provided that an exten-

sive set of relaxation data is measured at several

magnetic ®elds [78,197]. It was noted that overesti-

mation of 15N CSA and/or underestimation of rNH

values lead to a decrease of the order parameters S2.

3.2.3.4. Protein aggregation. To ensure high sensitiv-

ity, NMR experiments are performed at relatively high

(typically millimolar) protein concentrations. At these

concentrations speci®c or non-speci®c interactions

between protein molecules might affect the overall

rotation of a protein (see Section 2.3). If substantial

fractions of different aggregate states of a protein are

present in solution, the model-free approach can

hardly provide a reasonable description of the relaxa-

tion data [105]. It was shown [105] that one could get

an unphysical picture of almost `frozen' internal

dynamics, with the order parameters close to 1.0, if

the protein aggregation is erroneously disregarded.

Fushman et al. [156] proposed the method allowing

model-free analysis of relaxation data in the case of

non-speci®c protein dimerisation. In the general case,

however, analysis of the relaxation data in aggregated

molecules requires knowledge about the character of

the association processes, the rate constants of these

processes and the speci®city of the protein±protein

interactions. Therefore, probably the best recipe is to

select the sample conditions were the protein is in a

particular aggregate state (e.g. in pure monomer or

dimer forms). If the aggregation is extremely strong,

one could prefer the less assumption-demanding J(v )-

mapping approach (Section 3.3) instead of the model-

free analysis. In any case, one should check whether or
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Table 5

Apparent rotation correlation times tR (ns) obtained at several

magnetic ®eld strengths in 15N NMR relaxation studies of proteins

(all apparent rotation correlation times were calculated from mean

R2/R1 ratios represented in the corresponding article)

Protein Citation Magnetic ®eld strength (T)

7.0, 9.4 11.7 14.1 17.6

G(B1) [179] 3.35 3.27

Eglin c [206] 4.35 4.12 4.04

Fibronectin [189] 5.3 5.0 4.9

P53 [257] 15.0 14.5

4-OT [258] 14.4 13.9

434(1±63) [194] 5.8 5.5



not the protein aggregates by measuring of 15N R1 or R2

at several protein concentrations or by other methods.

In fact, the dependence of 15N relaxation rates on

protein concentration has been reported in several

relaxation studies of proteins [79,156,189,201].

3.2.4. Model-free analysis of relaxation data recorded

at several magnetic ®elds

Conventional estimation of tR from R2/R1 ratios,

assuming fast intramolecular dynamics, originates

from the numerous relaxation studies of proteins

performed at a single magnetic ®eld. However, using

tR obtained from R2/R1 ratios might result in an apparent

inconsistency of the relaxation data recorded at several

magnetic ®elds indicated, e.g. by the dependence of the

tR obtained from R2/R1 ratios on the magnetic ®eld (see

above). Therefore, the analysis of relaxation data

recorded at several magnetic ®elds requires a more

general method for tR estimation and characterisation

of molecular overall rotation.

Orekhov et al. [78,148] proposed a method for deter-

mination of tR and selection of a model for overall rota-

tion using the relaxation data recorded at several

magnetic ®elds. First, a representative set of protein
15N nuclei possessing uniform R1, R2 and large uniform
15N{1H} NOE values is selected. This set can be

restricted to 15N± 1H groups involved in the hydrogen

bonding network of a regular secondary structure. It is

assumed that the relaxation data of all selected 15N

nuclei are accounted for by the same form of correlation

function of internal motions CI(t). Additionally, adjus-

table exchange terms Rex can be included for all selected
15N nuclei. The relaxation data for all selected nuclei are

®tted simultaneously for different combinations of CO(t)

and CI(t) (Fig. 8) by minimisation of a `cumulative'

target function (Eq. (3.1)). Now the index i in Eq.

(3.1) runs over all relaxation data of the set of 15N nuclei.

For given models of CI(t) and CO(t) the parameters of the

overall rotation are adjusted simultaneously with the

adjustment of the site-speci®c parameters of CI(t) and,

possibly, Rex. An appropriate model for the data analysis

(Fig. 8) is selected according to the values of the opti-

mised `cumulative' target function using the statistical

procedure described in Section 3.1. The ®nal parameters

of the overall rotation are taken from the most appro-

priate model. In short, the parameters of the overall

rotation are adjusted along with the selection of the

base model for the intramolecular dynamics. This is

the main difference from the commonly used procedure,

where fast dynamics (Eq. (3.8a)±(3.8c)) is implicitly

accepted as the base model for the internal motions.

The subsequent analysis of the relaxation data is

performed as in the conventional model-free protocol

(see above). Namely, the model of CI(t) is selected and

the model parameters with uncertainties are determined

foreach 15Nnucleus in theprotein.Finally, in the frameof

the chosen models of CO(t) and CI(t), one can re-adjust all

the parameters of these models by simultaneous ®tting.

Andrec et al. [175] noted that if the parameters of the

overall rotation are ®xed (as is done in the second stage

of conventional model-free analysis) the uncertainties

of the parameters of CI(t) will be underestimated. These

authors proposed a Bayesian approach for estimation of

the uncertainties of the model-free parameters. Reason-

able estimates of the parameter uncertainties can also be

obtained from the covariance matrix of the optimised

model, calculated under simultaneous re-optimisation

of the parameters of CI(t) for all 15N nuclei with the

adjustable parameters of overall rotation [182].

Below we consider two examples of the analysis of

relaxation data recorded at several magnetic ®elds

using the described strategy.

3.2.4.1. Repressor 434 (1±63). The above described

strategy [148] was applied for the analysis of 15N relaxa-

tion data of the DNA-binding domain (1±63) of 434

repressor measured at two magnetic ®elds Ð 9.4 and

17.6 T (400 and 750 MHz 1H). The overall rotation

correlation time tR of 434 (1±63) obtained from R2/R1

ratios at 9.4 T 5.80 ^ 0.15 ns, exceeds the one for

17.6 T, 5.50 ^ 0.15 ns. This difference as well as a

systematic difference between local tR obtained from

R2/R1 ratios of invidual backbone 15N nuclei of 434 (1±

63) at 9.4 and 17.6 T (Fig. 14) indicates non-local

conformational changes in the protein occurring in the

nanosecond time-scale (see above). Thus, tR derived

from R2/R1 ratios is most probably underestimated and

the original model-free protocol is not applicable for the

analysis of 15N relaxation data of 434 (1±63).

The tR for 434 (1±63) was selected by simulta-

neous ®tting of the relaxation data for a selected

set of the 15N nuclei using different combinations

of CI(t) and CO(t) (Fig. 8; Table 4). It was shown

that neither the (S2) nor the (S2, t e) models of CI(t),

implying fast intramolecular motions, can match

the experimental data within the used uncertainties.
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The model selection criteria (Section 3.1) results in

a �S2
f ; S

2
s ; ts� model of CI(t), implying nanosecond

time-scale motions, and an isotropic model of CO(t) with

tR ca. 30% higher than obtained from R2/R1 ratios.

The subsequent data analysis showed that the

intramolecular motions of 434 (1±63) are charac-

terised by mean order parameters S2
f and S2

s of

0.90 ^ 0.03 and 0.59 ^ 0.06, respectively, and

correlation times t s of 5.1 ^ 1.3 ns, suggesting

collective intramolecular motions in the nanose-

cond time-scale for most backbone NH groups

of 434 (1±63). These motions were tentatively

attributed to rearrangement of the a-helix orienta-

tions in the molecular co-ordinate frame.

This study revealed an essential ¯exibility for 434

repressor (1±63), which can be regarded as being in

contradiction with the common view on the protein

internal dynamics. However, the common view is

mostly based on the traditional model-free analysis

of 15N NMR relaxation data under assumptions

posed by Lipari and Szabo [164], which never have

been proved for the proteins. Moreover, there is no

obvious reason to assume that certain time-diapason

of intramolecular motions is absent in proteins. In

fact, the question of whether proteins are ¯oppier

than is generally thought is the subject of ongoing

debate [202,203].

3.2.4.2. Transmembrane segment (1±36) bacterio-

rhodopsin. The described strategy was also applied

to study the backbone dynamics of the fragment

(1±36) from bacteriorhodopsin (BR) solubilized in

chloroform/methanol (1:1) mixture [78]. The peptide

comprises a single transmembrane a-helix 8±32 and

disordered N- and C-terminal parts. The heteronuclear
15N R1, R2 and 15N{1H} NOE's for (1±36) BR were

measured at three magnetic ®elds 11.7, 14.1 and

17.6 T (500, 600 and 750 MHz 1H).

The overall rotation correlation time tR of (1±36) BR

was obtained as an adjustable parameter in the minimi-

sation of the `cumulative' target function for the resi-

dues 9±31, which form the a-helix in (1±36) BR.

Calculations for different models of CI(t) and CO(t)

were performed. In addition, the models with adjustable

exchange terms Rex, adjustable 15N CSA and adjustable

rNH included for all selected residues were tested. The

statistical tests based on the values of a `cumulative'

target function strongly favour an isotropic form of the

CO(t) and �S2
f ; S

2
s ; ts� model of CI(t), implying nanose-

cond time-scale internal motions. Since all HN vectors

in thea-helix are aligned in almost the same direction, it

is not surprising that the isotropic form of CO(t) appears

to be appropriate for relaxation data of the strongly

anisotropic (1±36) BR, for which the Dx/Dz and Dy/Dz

ratios are 0.296 and 0.297. The tR value of 5.8 ns
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Fig. 14. Plot of local tR values for individual residues of the 434 repressor (1±63) obtained from experimental R2/R1 ratio at 9.4 T (blank

circles) and 17.6 T (®lled circles) magnetic ®elds. Apparent tR values for Leu45 and Thr63 for the 17.6 T spectrometer are 6.8 and 4.8 ns,

respectively. Reproduced from [148] with kind permission from Adenine Press.



calculated for the isotropic CO(t) merely corresponds to

the longest correlation time of the actual anisotropic

CO(t) (Eqs. (2.10b)±(2.10d)).

In subsequent data analysis the �S2
f ; S

2
s ; ts� model of

CI(t) was selected for all 15N nuclei from the a-helical

9±31 part and for most nuclei from the disordered N-

and C-terminal parts of (1±36) BR. The intramolecu-

lar motions of amide NHs from the a-helical part are

characterised by the mean order parameters of S2
f �

0:84 ^ 0:02; S2
s � 0:60 ^ 0:05 and correlation times

ts � 3:0 ^ 1:0 ns: The residues of N- and C-terminal

parts exhibit high-amplitude motions with lower S2
f of

0.5±0.7 and S2
s of 0.2±0.4 and t s in the sub-nano-

second±nanosecond time-scale. For some of these

residues more complex four-parameter. �S2
f ; S

2
s ;

tf ; ts� or �S2
f ; S

2
s ; ts;Rex� models were found to be

required to account for the experimental data.

Having a mean order parameter of nanosecond

motions, S2
s ; as low as 0.6 indicates substantial confor-

mational changes of most residues in the a-helix of

(1±36) BR. It was suggested [78] that (1±36) BR

exhibits transitions between folded and partially or

completely unfolded states. Further support of these

equilibrium helix±coil transitions arises from mole-

cular dynamics simulation of (1±36) BR in a weakly

polar medium [204], and from modelling of the

dynamics of (1±36) BR using a statistical mechanics

theory of helix-coil transitions [205].

3.3. J(v ) mapping

When the intrinsic assumptions of the model-free

approach are violated the relaxation data still can be

interpreted within the framework of the weaker assump-

tions that form the `spectral density function mapping'

approach, originally proposed by Peng and Wagner

[29,167]. Below we brie¯y outline the essence of this

method. The J(v) mapping is based on the fact that the

relaxation rates in a two-spin 1/2 system IS (Section 1.2)

are given by linear combinations of the values of J(v) at

®ve frequencies: 0, v I, vS, v I ^ vS. These values may

be obtained by solving the system of linear equations for

relaxation rates measured at a particular magnetic ®eld

strength. The original approach includes measurements

of six independent relaxation rates Ð R1S, R1I and R2IzSz

(Eqs. (1.28a)±(1.28f)), R2S and R2IzSx
(Eqs. (1.30a)±

(1.30e)) and the dipolar cross-relaxation rate rD (Eq.

(1.28d)). These rates allow one to determine ®ve values

of J(v) and the contribution to longitudinal relaxation of

proton I due to its dipolar interactions with other protons

in the protein, r IH. The corresponding system of linear

equations is given by:

R1S

R2S 2 Rex

R2IzSx
2 Rex

R2IzSz

R1I

rD

26666666666664

37777777777775
�

0 E A 0 6A 0

2E=3 E=2 A=2 3A 3A 0

2E=3 E=2 A=2 0 3A 1

0 E 0 3A 0 1

0 0 A 3A 6A 1

0 0 2A 0 6A 0

26666666666664

37777777777775

�

J�0�
J�vS�
J�vI 2 vS�
J�vI�
J�vI 1 vS�
rIH

26666666666664

37777777777775
; (3.12a)

where A � A2
D=3; E � A2

D 1 4A2
CSA�S�B

2
0; AD and ACSA(S)

are given by Eqs. (1.22b) and (1.24d), B0 is the magnetic

®eld strength, Rex is the contribution to R2S due to the

conformational exchange in the microsecond±

millisecond time-scale (Section 1.3). In Eq. (3.12a) the

relaxation of proton I due to the CSA mechanism is

neglected. The solution of Eq. (3.12a) is given by:
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where Jeff�0� � J�0�1 lRex; l � 3=�2E�: The uncer-

tainties of the J(v) values and of r IH are readily

calculated from the uncertainties of the relaxation

rates. From Eq. (3.12b) it is seen that conforma-

tional exchange in the microsecond±millisecond

time scale affects only the value of J(0). If the

relaxation measurements are performed for N

magnetic ®elds, one gets 4N values of J(v) at

non-zero frequencies and N values of Jeff(0). The

dependence of Jeff(0) on the magnetic ®eld can be

used for identi®cation of microsecond±millisecond

conformational exchange even for residues with

extensive sub-nanosecond nanosecond motions

[206].

The values of Jeff(0) and J(v S) are less sensitive

to the uncertainties of the experimental data and

provide valuable information about the mobility

of the relaxation relevant vector. Since the integral

of J(v) over the whole frequency range is constant,

the intramolecular motions tend to increase the

values of J(v ) at high frequencies and decrease

J(0). The values of J(v ) at high frequencies v I

and v I ^ v S are low and their estimates crucially

depend on the uncertainties of the experimental

data. Low precision of J(v ) at high frequencies

might result in arti®cial apparent increases of

J(v ) with increasing frequency, which is impossi-

ble for diffusive motions, or even in negative J(v )

values [29,167,206]. The conditions J(v I ^ v S) . 0

and J�vI 1 vS� . J�vI 2 vS� (for an 15N nucleus)

result in the inequality (14/5)rD . R1S 1 R1I2
R2IzSz

. rD; allowing one to estimate the precision

of experimental relaxation rates, required for char-

acterisation of J(v ) at high frequencies [206]. In

particular, if the absolute uncertainties of the long-

itudinal relaxation rates exceed (4/5)rD the values

of J(v) at high frequencies, obtained using the original

J(v) mapping, do not have much sense. It is noteworthy

that the required precision of the relaxation rates

increases with the increase of tR and B0.

For large molecules it is convenient to use a

reduced J(v ) mapping [206±210]. In the reduced

J(v ) mapping one makes assumptions about the beha-

viour of J(v ) at high frequencies. In particular, if one

accepts that J�vI� � J�vI ^ vS� � J�vh�; then values

of J(v ) can be obtained from the system of linear

equations for only three relaxation rates Ð R1S, R2S

and rD, which are obtained from conventional R1, R2

and NOE experiments (Section 1.4). In this case Eq.

(3.12a) is reduced to:

R1S

R2S 2 Rex

rD

2664
3775 �

0 E 7A

2E=3 E=2 13A=2

0 0 5A

2664
3775

J�0�
J�vS�
J�vh�

:

2664
3775:

�3:13a�
The solution of Eq. (3.13a) is given by

Jeff�0�
J�vS�
J�vh�

2664
3775 �

23=�4E� 3=�2E� 29=�10E�
1=E 0 27=�5E�

0 0 1=�5A�

2664
3775

�
R1S

R2S

rD

2664
3775: (3.13b)

Modi®cations in reduced J(v ) mapping for the case of

J(v ) given by a sum of an arbitrary number of Lorent-

zians were also proposed [207].

Although the values of J(v ) provided by J(v )

mapping can be interpreted within the framework of

different models of molecular motions or using the

model-free approach, J(v ) mapping is mostly helpful

in studies of unfolded or partially folded states of

proteins where no speci®c assumptions about protein

dynamics can be validated (see [207,210]). This

approach should be recommended as well if very

little is known about the overall rotation of the mole-

cule, e.g. for strongly inhomogeneous aggregated

proteins.

3.4. Conformational exchange as derived from

relaxation data

Conformational exchange between states with

different chemical shifts, occurring in the microse-

cond±millisecond time scale, provides an additional

relaxation pathway for a 15N nucleus (Section 1.3).

Conformational exchange can be characterised

using 15N relaxation data in several possible

ways. First, 15N nuclei involved in microsecond±

millisecond conformational exchange can be identi-

®ed by their enhanced transverse relaxation rates or

larger than average 15N R2/R1 ratios. One can also
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identify 15N nuclei affected by the exchange by

comparison of the R2/R1 ratios to the ratios of

transverse and longitudinal DD±CSA 15N cross-

correlated cross-relaxation rates measured at a

single magnetic ®eld strength [55]. This method

uses the fact that both hDD,CSA(S) (Eq. (1.30d)) and

rDD,CSA(S) (Eq. (1.28e)) are independent of chemical

exchange and their ratio is, to a good approxima-

tion, independent of the value of 15N CSA and the

direction of the principal axes of the 15N shielding

anisotropy tensor. More rigorously, the contribution

Rex of fast conformational exchange to R2 can be

extracted using model-free analysis of relaxation

data recorded at several magnetic ®elds (Section

3.2.4). The conformational exchange characterised

in such a way depends, however, on assumptions

that are commonly made at different stages of the

model-free data analysis (Section 3.2.3). Fast

conformational exchange can also be described

using J(v ) mapping (Section 3.3) from the depen-

dence of Jeff(0) on the magnetic ®eld strength. It

was also suggested that the contribution of fast

conformational exchange to R2 can be extracted

from the ®eld dependence of R2 2 R1/2 [189,192].

However, the procedures mentioned above allow

only an identi®cation but not a detailed character-

isation of conformational exchange.

A more detailed description of microsecond±milli-

second conformational exchange is available on the

basis of 15N R2 (CPMG) [44] and 15N R1r measure-

ments [70,71,80,211] (see Sections 1.3 and 1.4).

Several R2 (CPMG) experiments with a different

pulse separation in the CPMG sequence and/or R1r

experiments with different amplitudes v 1 or reso-

nance offsets Dv of the applied spin-locking RF

®eld are usually performed. Commonly, in the

analysis of R1r and R2 (CPMG) data it is assumed that

the exchange occurs between two states A and B. In the

case of fast two-state conformational exchange the

dependence of R1r on v 1 and Dv is given by:

R1r � R1 cos2u 1 R2 sin2u 1 pApBD
2
exB2

0Jex�ve�sin2u;

�3:14�
where ve �

�������������
v2

1 1 Dv2;

q
Jex�v� � kex=�k2

ex 1 v2�;
u � arctan�v1=Dv� (see Eqs. (1.36b), (1.38b), (1.41)

and (1.43) in Sections 1.2 and 1.3). In the absence of

conformational exchange, Eq. (3.14) can be used to

extract R1 and R2 from R1r data measured with differ-

ent Dv and v 1. If conformational exchange takes

place one can also extract the exchange rate constant

kex and the value of pApBD
2
ex: The question whether a

more complex model allowing for the exchange better

®ts the experimental R1r data may be addressed using

statistical criteria (Section 3.1). Rotating-frame

relaxation measurements are most ef®cient for studies

of the conformational exchange occurring with rate

constants kex on the order of the accessible effective

®eld amplitudes v e. The contribution to R1r from

extremely fast exchange with kex q ve is essentially

independent of v e, which complicates the detection of

such exchange by ®tting of R1r data using Eq. (3.14).

In practice, the amplitude v 1 of the spin-locking RF

®eld in the 15N rotating frame relaxation experiments

is selected to exceed the 15N spectral width. The upper

limit of v 1 is, in turn, given by the amount of power

that can be transmitted to the probe and the sample.

Therefore, spin-locking RF ®elds of amplitudes v 1/

2p ranged from 1.0 to 2.0 kHz are usually applied.

Since the exchange contribution to R1r is scaled as

sin2u it is useless to measure R1r far from on-reso-

nance, i.e. at u , 108, approximately corresponding to

ve=2p . 10 kHz: Thus, the values of v e sampled in
15N R1r experiments lie in the range 1.0±10.0 kHz

which allows one to study the microsecond±

millisecond time-scale exchange starting from the

processes occurring with characteristic times as fast

as tens of microseconds [70,71,80,212].

The transverse relaxation rates R2 measured with

the CPMG sequence provide another possibility to

obtain the exchange rate constant kex and information

related to the chemical shift dispersion between the

states (i.e. from the value of pApBD
2
ex). For the fast

exchange the equations for the exchange contributions

Rex to R2 (CPMG) (Eqs. (1.44a)±(1.45c)) and Rr ,ex/

sin2u to R1r (Eq. (1.43)) describe quite similar depen-

dencies provided that they are plotted versus the

CPMG frequency vcp � p=2d (2d is the delay

between the pulses in CPMG sequence) and v e,

respectively (Fig. 15). In complete analogy to the

R1r data the most pronounced dependence of R2

(CPMG) on v cp is observed if the exchange occurs

with rate constants kex of the order of v cp. The range of

v cp accessible in 15N R2 (CPMG) experiment is some-

what different from those of v e in 15N R1r measure-

ments. The lower bound of v cp/2p in the 15N R2

D.M. Korzhnev et al. / Progress in Nuclear Magnetic Resonance Spectroscopy 38 (2001) 197±266 253



(CPMG) experiment is about 400±500 Hz. This is

required for effective suppression of mixing of in-

phase and anti-phase components of 15N magnetisa-

tion during the CPMG sequence (see Eq. (1.47)). To

access pulse repetition rates v cp/2p comparable to

one-bond scalar coupling constant JNH < 90 Hz; a

modi®ed relaxation-compensated 15N CPMG experi-

ment was suggested [213]. The upper bound of v cp/2p
is about 1200 Hz. This limit is imposed by the spec-

trometer hardware and the sample heating. Thus, in

accordance with the accessible range of v cp/2p, the
15N CPMG experiment is most ef®cient for the

description of the conformational exchange occurring

in the hundred-of-microsecond±millisecond time-

scale. Due to different accessible ranges of v e in R1r

and v cp in CPMG, these two experiments effectively

complement each other when considering the micro-

second±millisecond time-scale motions [80].

To apply the equations listed in Section 1.3 for

studies of conformational exchange one needs to

ascertain whether the exchange is in the fast limit.

In principle, one may distinguish between fast and

slow exchange by the number of resonance lines

present in the NMR spectra per exchanged spin.

However, observation of single resonances in NMR

spectra does not necessarily mean that the exchange

is fast. This problem has been considered and

recipes proposed on how to estimate the time-scale

of an exchange process basing on CPMG data

[177,214].

3.5. Analysis of relaxation data using computer

simulations of molecular dynamics

NMR experiments provide relaxation data on 1H,
13C and 15N nuclei and thus may describe most atoms

in a protein molecule. However, even this extensive

amount of relaxation data is insuf®cient for charac-

terising the details of the complex conformational

rearrangements that occur in proteins. Neither

model-free parameters (see Section 3.2) nor the para-

meters of simple analytical motional models

(reviewed by [158]) derived from the NMR relaxation

data can re¯ect all modes of motions that affect vary-

ing subsets of atoms and occur at various frequencies.

A complete characterisation of the internal motions in

a protein, at the atomic level, can in principle be

obtained from computer simulations, e.g. by inte-

gration of Newton's equation in MD (molecular

dynamics) simulations or by separating `essential'

motions in normal mode analysis. In practice, these

computational approaches suffer from a number

of drawbacks, as will be summarised below.
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Nonetheless, complementary information may be

gained that allows for improvements in the models

used to explain the NMR relaxation data; in return,

experimental data from NMR may prove helpful for

advancing the computer simulation approaches.

3.5.1. MD simulations: method and limitations

In MD simulations, the protein molecule and the

surrounding solvent are represented by N atoms with

co-ordinates ri�i � 1¼N�; which interact with each

other according to an energy potential V�ri;¼rN�
de®ned by a force-®eld (see, e.g. [215]). Typically,

force ®elds include terms for deformations of the

chemical structure (bond lengths, bond angles, torsion

angles) and for long-range interactions (van der Waals

and electrostatics potentials). From a carefully

selected `starting' structure, the time evolution can

be obtained by integrating Newton's equation of

motion in discrete, short time steps. Thus, MD simu-

lations yield a very detailed description of the internal

dynamics of proteins with very high resolution both in

space and time.

The practice of MD simulations has been presented

many times (e.g., [216]), and yet new developments

such as the use of the particle mesh Ewald method

[217] continue to provide improvements, sometimes

at the risk of introducing new artefacts. Many MD

simulations are recorded for macromolecules

surrounded by explicit water molecules, and periodic

boundary conditions are applied. They rely on proto-

cols that remove fast vibrational modes for selected

bonds, e.g. bonds with hydrogen atoms, with algo-

rithms such as SHAKE [218], and they ensure constant

temperature and pressure by frequent adaptation of the

molecular co-ordinates and velocities [219].

This last statement leads to a discussion about the

limitations of MD simulations. Besides the approxi-

mations implicit in classical force ®elds, `non-physi-

cal' interference such as co-ordinate or velocity

scaling in pressure or temperature control are

applied. Other limitations result from the need for

selecting a starting structure, the ®nite size of time

steps in the simulations or the choice of a solvent

model. Obviously, computer power sets limitations

to the length of a simulation and to the number of

independent trajectories (representing a molecular

ensemble) that can be recorded for a given macro-

molecule. These shortcomings of MD simulations

make it advisable to compare parameters extracted

from a MD trajectory to similar parameters obtained

from an experimental method. In a combined study

using MD simulations and experimental data, the

latter may increase the con®dence in the simulation

data, and the MD data provide better resolution in

time and space for the dynamics experienced by a

macromolecule.

3.5.2. Calculation of correlation functions and order

parameters from MD trajectories

Similar model parameters as derived from NMR

relaxation measurements can also be obtained from

the analysis of MD trajectories. Measured hetero-

nuclear NMR relaxation rates R1 and R2, and hetero-

nuclear NOEs depend on the values of the spectral

density function J(v ) at several characteristic

frequencies. Values of the spectral density function

J(v ), however, are usually not estimated from MD

trajectories (although some authors have compared

the results of J(v ) mapping and MD simulations;

see, e.g. [220]). One reason is that the direct calcula-

tion of J(v ) values for v I, v S, v I ^ v S frequencies

requires trajectories with a length of hundreds of

nanoseconds (see [221]). For short trajectories the

correlation functions derived from MD simulations

have to be approximated, e.g. by ®tting a sum of

exponents. Another reason is that the limited size of

the systems in MD simulations does not allow the

correct modelling of overall rotational diffusion of

the molecule. Thus, only the correlation functions

for intramolecular motions, CI(t), are usually calcu-

lated (molecular rotation and translation is usually

eliminated during the MD simulation; in addition,

the protein structures from a MD trajectory can be

superimposed to remove the molecular rotation and

translation). Correlation functions, for times not

exceeding the length of the trajectory, can be calcu-

lated from the discrete snapshots of a MD simulation,

e.g. as follows (see Eq. (2.13)):

C�kt� � 1

N 2 k

XN 2 k

i�1

P2�mimi1k�; �3:15�

where m is a unit relaxation relevant vector, N the

number of snapshots in the trajectory, index i runs

over N 2 k snapshots, t the time interval between

the successive snapshots, P2�x� � �3x2 2 1�=2 is a
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second-rank Legendre polynomial. Uncertainties in

the values of the correlation function CI(t), calculated

from the MD trajectory, depend on the characteristic

time of the intramolecular dynamic processes t e and

on the trajectory length tMD [102]:

DC�t� � C�t��1 2 C�t�� ����������2te=tMD

p
: �3:16�

The model-free order parameter S2 (Section 3.2) can

be calculated from a MD trajectory using plateau

values of the correlation function (Eq. (3.15)) or

directly from the distribution of the directions of the

relaxation relevant vectors (see Eq. (3.9a)):

S2 � 1

N2

XN
i�1

XN
j�1

P2�mimj�; �3:17�

where indexes i and j run over all N snapshots of the

trajectory. Examples of correlation functions CI(t)

calculated from an MD trajectory are shown in Fig.

16. Order parameters and correlation times of internal

motions derived from MD trajectories have often been

compared with the results of model-free analyses of

relaxation data [102,156,174,221±230].

3.5.3. Motions affecting NMR relaxation revealed by

MD simulations

3.5.3.1. Femtosecond±picosecond time scale

motions. The best characterisation by correlation

functions and order parameters from MD simulations

is for fast motions occurring in the femto to picosecond

time-scales. Backbone NH and CaH order parameters

for such motions usually compare well with those

obtained from model-free analyses of relaxation data

(see, e.g. [225]). The correlation functions of internal

motions, CI(t), for the backbone NH vectors usually

decay during the ®rst 50±100 fs to values around

0.85±0.9 (Fig. 16a). These values correspond to the

order parameters of fast internal motions obtained

from experimental data for ordered regions of proteins.

The oscillating behaviour of CI(t) (Fig. 16a) in the

femtosecond time-scale results from local correlated

vibrations of torsion angles (backbone w , c and side-

chain x1) as well as from vibrations of bond lengths and

bond angles. At room temperature, fast vibrations of the

backbone NH vector occur, relative to a molecular co-

ordinate frame, in a cone with angular amplitudes of

about 208 [174,223,226]. In the co-ordinate frame

attached to the peptide plane the angular amplitudes

of in-plane and out-of-plane NH vector vibrations are

3±58 and 10±128, respectively [223], which corre-

sponds approximately to order parameters S2 of 0.95±

0.96. This value might be regarded as an upper limit for

NH order parameters at room temperature. It is notable

that vibrations at lowest quantum vibrational level,

which are not accounted for by the classical Newton

equations used in MD simulations, would result in an

additional decrease in order parameters. This effect may

partially account for overestimation of MD derived

order parameters with respect to the experimental

values [102,224].

Order parameters derived from MD simulations for

CaH bonds are usually higher than those observed for

backbone NH vectors [224,231]. Qualitatively, this

can be explained by the restriction of CaH mobility

due to the side-chain. Daragan and Mayo [231]

showed that the differences in NH and CaH order

parameters are associated with the correlated vibrations

observed for the backbone torsion angles w and c of

neighbour residues.6 In particular, S 2
CH increases and

S2
NH decreases with an increasing correlation coef®cient

c(w i,c i) and a decreasing c(c i,w i11). The analysis of MD

trajectories shows that the motions of c i and w i 1 1 are

strongly anti-correlated i.e. c(c i,w i11) , 20.5. For

a-helices the vibrations of w i and c i are also slightly

correlated, whereas for a b-structure the correlation

coef®cient c(w i,c i) is closed to zero.

3.5.3.2. Sub-nanosecond time-scale motions. The

internal motions resulting in a decay of CI(t) in the

time-scale longer than 1 ps but shorter than 100 ps±

1.0 ns are also well characterised from MD simula-

tions (see, e.g. Refs. [174,224,226]). The motions of

CaH and NH vectors in this time-scale strongly

depend on the secondary structure of the protein, in

particular on over-damped quasi-harmonic motions

such as twisting of b-sheets or bending of a-helices

[226], local conformation transitions such as jumps

between side-chain rotamers or simultaneous ¯ips of

the backbone torsion angles c i and w i11 resulting in

changes of the peptide plane orientation [226,232],

local changes in the hydrogen bond network

such as the formation of bifurcated a 2 310
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hydrogen bonds (see, e.g. Ref. [233]) and on confor-

mational transitions in the disordered parts of the protein

molecule. Some picosecond oscillations may be

observed from CI(t) functions calculated from in

vacuo MD trajectories (Fig. 16b). These oscillations

usually disappear when the effects of viscous damping

are taken into account.

MD simulations and the experimental relaxation

data (in particular, large 15N{1H} NOEs) suggest

that the mobility of secondary structure elements of

proteins in the sub-nanosecond time-scale is substan-

tially reduced. The correlation functions CI(t) for CaH

and NH vectors usually reach a plateau value of about

0.8 (determined mainly by the initial femtosecond

decay) during the ®rst tens of picoseconds (Fig. 16b).

This can justify the application of simple one- (S2) or

two-parametric (S2, t e) forms of a spectral density

function (Eq. (3.8a)±(3.8c)) upon the model-free

analysis of relaxation data [164,165]. The intramole-

cular motions in ¯exible regions of proteins (e.g. in N-

and C-terminal parts of the molecule or linker regions

between the elements of secondary structure) are

more complex and include both fast femtosecond±

picosecond quasi-harmonic vibrations and relatively

slow conformation transitions in the sub-nanosecond

time-scale, including concerted ¯ips of backbone and

side-chain rotamers or formation of ordered structures

stabilised by transient hydrogen bonds. Usually, the

`extended' three- �S 2
f ; S

2
s ; ts� or even four-parameter

�S2
f ; S

2
s ; ts; tf� form of a spectral density function
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(Eqs. (3.10c), (3.10d)) [166] is required for model-

free analysis of the relaxation data for the backbone

NHs from the disordered regions. Using a plateau

value for the correlation function CI(t) for calculations

of the order parameters of intermediate motions S2
s

(with correlation times ts . 100 ps� is often compli-

cated. In this case S2
s may be estimated from the distri-

bution of the NH vector directions (Eq. (3.17)).

Examples of the distributions of the backbone NH

vector directions obtained from MD simulations are

shown in Fig. 17.

3.5.3.3. Nanosecond time-scale motions. Although the

predictive capacities of MD with respect to fast femto-

second±picosecond dynamics have been repeatedly

demonstrated, the method still fails in describing

slow nanosecond motions [227,228]. Protein

dynamics in this time-scale includes global conforma-

tional rearrangements such as changes in packing of

secondary structure elements and early events of

protein folding such as a-helix growth or breathing

of b-sheets. An example of a folding event affecting

the relaxation of 15N nuclei is the helix±coil transition

in a transmembrane segment of (1±36) bacteriorho-

dopsin [78,204,205]. The rare occurrence of such

events in MD trajectories, however, can not provide

a statistically meaningful description of nanosecond

time-scale motions. Thus, the question of whether the

rare events detected in MD trajectories are a conse-

quence of an inaccurate MD procedure still remains

unclear (see [225]).

3.5.4. Analytical models for relaxation data analysis

derived from MD simulations

MD simulations can help in the selection of an

adequate analytical motional model for the descrip-

tion of NMR relaxation data. A general strategy for

this selection was proposed by Bremi et al. [162] in

their detailed analysis of the internal dynamics of the

cyclic decapeptide antamanide: (i) Set up a MD simu-

lation, with a length that ideally exceeds the maximal

intramolecular correlation time by a factor of about

ten. In the case of slowly exchanging species, several

MD starts with different initial structures may be

required. (ii) Select an analytical motional model or

a combination of models suitable for the analysis of

the relaxation data. Different approaches for this

selection might be used: visual analysis of the trajec-

tory, analysis of the distributions of vector directions,

study of motional correlations or calculation of free

energy surfaces for different motional degrees of

freedom. (iii) Derive analytical expressions for cor-

relation functions of intramolecular motions, CI(t),

depending on a relatively small number of parameters.

(iv) Calculate the model relaxation rates from the MD

trajectory, and check the sensitivity of the model para-

meters with respect to the uncertainties of the experi-

mental data; if possible simplify the model. (v)

Analyse the experimental data. If the model para-

meters calculated from the experimental data are in

good correspondence with those derived from the MD

trajectory then the selected motional model might be

regarded as appropriate and the MD setup as correct.

The proposed strategy was used for the analysis of a

MD trajectory of the cyclic decapeptide antamanide

[162]. It was shown that the Gaussian axial ¯uctuation

(GAF) model [234] for fast motions within side-chain

rotameric states and a jump model for slow transitions

between rotamers were suitable for the analysis of 13C

relaxation in phenylalanine side-chains. Apart from

the model selection and checking the correctness of

the MD procedure the proposed strategy might also be

used for planning of an NMR experiment (i.e. for the

selection of the optimal set of relaxation data suitable

for consideration of the particular type of intramole-

cular motions). For example, Bremi and Bruschweiler

[235] showed that the motions of peptide planes could

be considered as superpositions of the restricted rota-

tions about three orthogonal axes (three-dimensional

GAF model). The parameters of these rotations might

be obtained from 15N R1, NOE and 13C 0 R1 data

measured at several magnetic ®elds.

3.5.5. Normal mode analysis and NMR relaxation

data

Another computational method of bio-molecular

dynamics studies, normal mode analysis, is also

widely used for the interpretation of NMR relaxation

data [102,161,236,237]. In normal mode analysis the

potential energy surface V(r1,¼,rN) is approximated

by harmonic potentials, depending on second

moments of V(r1,¼,rN) calculated at its minimum.

The dynamics of the molecule is represented by

superposition of the vibrations occurring with

frequencies v i along 3N 2 6 orthogonal directions

Qi in 3N dimensional co-ordinate space (three
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Fig. 17. Distributions of the NH vector directions for the residues Met20 and Gly21 from 0.5 ns in vacuo MD trajectory of (1±36) bacteriorhodopsin and NH Asp38 from 0.5 ns in

vacuo MD of (1±71) bacterorhodopsin [226]. The residues Met20 and Gly21 are from the central part of a-helix 8±32. Asp38 belongs to the disordered loop region connecting the

transmembrane helices 8±32 and 42±64. The several maxima in distribution for Gly21 are due to the local conformational transition Ð simultaneous ¯ip of c Met20 and w Gly21

backbone angles resulting in change of orientation of the corresponding peptide plane. The several maxima in distribution for Asp38 point on complex dynamics of the disordered

region of the molecule. Reproduced from [226] with kind permission from Kluwer Academic Press.



translational and three rotational degrees of freedom

should also be considered). The normal modes Qi are

calculated from the equations:

M1=2FM1=2Qi � v2
i Qi �3:18a�

QiQj � dij; �3:18b�
where M is a diagonal matrix with atomic masses,

F the matrix of the second derivative of potential

energy V(r1,¼,rN). For a classical system interact-

ing with the thermal bath the ¯uctuations in harmo-

nic potential walls are described by the following

equations:

kqi�0�qj�t�l � dij

kBT

v2
i

cos�vit�; �3:19a�

s 2
i � kBT

v2
i

; �3:19b�

where, qi and qj are mass-weighted deviations of

i-th and j-th normal coordinates from their equili-

brium positions, T is the temperature, kB is the Boltz-

mann's constant, d is the Kronecker's delta and s is

the vibration amplitude. For a quantum-mechanical

system these equations have the form:

kqi�0�qj�t�l � dij

"

2vi

coth
"vi

2kBT

� �
cos�vit� �3:20a�

s 2
i � "

2vi

coth
"vi

2kBT

� �
: �3:20b�

In some cases it is convenient to use the torsion

angle co-ordinate space instead of the conventional

Cartesian space for the normal mode analysis of

proteins [237].

The description of molecular motions provided

by normal mode analysis does not account for the

effects of the surrounding medium. A useful modi-

®cation of the normal mode analysis accounting for

the viscous damping, Langevin mode analysis, was

proposed by Lamm and Szabo, [123]. In Langevin

mode analysis the frequencies of the vibrations are

given by complex numbers. The method is appro-

priate for studies of protein harmonic motions since

the protein vibrations with frequencies less than

75±100 cm21 are over-damped [236,238]. The set

of molecular normal or `essential' modes might be

obtained from MD trajectories by diagonalisation of

the covariance matrix for positional ¯uctuations of

protein atoms (quasi-harmonic and essential mode

analysis) [239±241]. Although at 300 K more than

70% of the root mean square deviations of protein

atoms from their equilibrium positions are

accounted for by conformational transitions (i.e.

by inharmonic motions), vibration analysis (normal

or Langevin mode) is useful for the understanding

of some aspects of protein dynamics (in particular

quantum effects, see, e.g. Ref. [238]).

From (Eqs. (3.18a)±(3.20b)) one can easily

calculate the auto- and cross-correlation functions

for any quantites depending on the co-ordinates

of protein atoms [102,238]. Palmer and Case

[102] used normal mode analysis for calculations

of correlation functions CI(t) and order parameters

S2 for fast femtosecond±picosecond motions of

backbone NH and CaH vectors. It was shown

that the order parameters calculated with the

assumption of a classical nature of protein motions

exceed those calculated for a quantum-mechanical

system (the difference is of about 0.05±0.06). This

is explained by the fact that in the classical case

the amplitude of high-frequency vibrations might

be substantially lower than those expected for

quantum vibrations.
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Appendix A

A.1. Spherical harmonics

Spherical harmonics of rank l are given by (see Ref.

[242]):

Ylm�u;w� � Qlm�u�Fm�w�; �A1a�
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where u (0,p ) and w (0,2p ) are the polar angles;

umu # l

Fm�w� � �2p�1=2 eimw �A1b�

Q lm(u) are given by:

Q lm�u� � �21�m 2l 1 1

2

�l 2 m�!
�l 1 m�!

� �1=2

Pm
l �cos u�;

�A1c�

where

Pm
l �cos u� � �sin u�m d

dcos u

� �m

Pl�cos u�;

Pl�cos u� � 1

2ll!

d

dcos u

� �l

��cos u�2 2 1�l;

Pl(cosu ) is a Legendere polynomial of rank l.

The spherical harmonics are normalised on a unit

sphere

Z2p

0
dw

Zp

0
Yp

lm�u;w�Yl 0m 0 �u;w� sin u du � dl;l 0dm;m 0 :

�A2a�

Other useful properties of spherical harmonics are

Yp
lm�u;w� � �21�mYl;2m�u;w�;

Ylm�2u;2w� � �21�mYp
lm�u;w�;

�A2b�

Yl0�u;w� � 2l 1 1

4p

� �1=2

Pl�cos u�:

One of the most useful relationships is an addition

theorem for spherical harmonics

Pl�cos uij� � 4p

2l 1 1

Xl

m�2 l

Yp
lm�ui;wi�Ylm�uj;wj� �A2c�

Finally, let us write explicit expressions for some

spherical harmonics and Legendre polynomials

P0�cos u� � 1 P1�cos u� � cos u

P2�cos u� � 1
2
�3 cos2 u 2 1�

�A3a�

Y00 � 1����
4p
p �A3b�

Y10 �
�����

3

4p

r
cos u Y1;^1 � 7

�����
3

8p

r
e^iw sin u

�A3c�

Y20 �
�������

5

16p

s
�3cos2u 2 1�

Y2;^1 � 7

�����
15

8p

s
e^iw sin ucos u

�A3d�

Y2;^2 �
�������

15

32p

s
e^2iwsin2u:

A.2. Transformational properties of spherical

harmonics. Wigner functions

Rotations in space are parameterised by Euler's

angles a , b and g . Under the rotations the spherical

harmonics Ylm(u , w) are transformed through the

Wigner functions Dl
m 0m; depending on a , b and g

(see [242]):

Ylm�u 0;w 0� �
Xl

m 0�2 l

Dl
m 0m�a;b;g�Ylm 0 �u;w�: �A4�

The Wigner functions Dl
m 0m are given by

Dl
m 0m � e2im 0adl

m 0m�b� e2im 0g �A5�

dl
m 0m�b� �

X
s

�21�s��l 1 m�!�l 2 m�!�l 1 m 0�!�l 2 m 0�!�1=2
�l 2 m 0 2 s�!�l 1 m 2 s�!�s 1 m 0 2 m�!s!

� cos
b

2

� �2l1m2m 022s

2sin
b

2

� �m 02m12s

:
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The Wigner functions are orthogonalZ2p

0
dg
Zp

0
sin b db

Z2p

0
daDlp

mk�a;b; g�Dl 0
m 0k 0 �a;b;g�

� 8p2

2l 1 1
dl;l 0dm;m 0dk;k 0 : (A6a)

Other useful properties of Wigner functions are:

Dl
mm 0 �2g;2b;2a� � Dlp

m 0m�a;b; g� �A6b�

Dl
m0�a;b;g� � 4p

2l 1 1

� �1=2

Yp
lm�b;a�

Dl
0m�a;b;g� � �21�m 4p

2l 1 1

� �1=2

Yp
lm�b;g�:

A.3. Irreducible tensor operators

The irreducible tensor operator Tl of rank l

comprises the set of 2l 1 1 operators Tlm (m is ranged

from 2l to l) transformed under spatial rotations

through the Wigner functions (Eq. (A4)), i.e. transfor-

mational properties of Tlm are similar to those of sphe-

rical harmonics. This de®nition is equivalent to the

de®nition of irreducible tensor operator through

commutation relationships (see [242]):

�Iz; Tlm� � mTlm

�Ix ^ iIy;Tlm� � �l�l 1 1�2 m�m ^ 1��1=2Tl;m^1;

�A7�

where Ix, Iy and Iz are the components of the angular

momentum operator. An example of irreducible

tensor operator of rank 1 is operator with components:

I21 �
Ix 2 iIy��

2
p � I2��

2
p I0 � Iz

I1 � 2
Ix 1 iIy��

2
p � 2

I1��
2
p :

�A8�

From two commuting tensor operators Al1
of rank l1

and Bl2
of rank l2 one can compose an irreducible

tensor operator Cl of rank l using the following rela-

tionship

Clm �
X

c�l1; l2; l;m1;m2;m�Al1m1
Bl2m2

; �A9�
where the c(l1, l2, l; m1, m2, m) are Clebsch±Gordan

coef®cients [242]. For example, from the two

irreducible tensor operators A1 and B1 of rank 1 one

can compose an irreducible tensor operator C2 of rank

2 with the components:

C20 � 1��
6
p �2A10B10 1 �A11B1;21 1 A1;21B11��

C2;^1 � 1��
2
p �A10B1;^1 1 A1;^1B10�

�A10a�

C2;^2 � A1;^1B1;^1;

or, e.g. the irreducible tensor operator C0 of rank 0

with the component

C00 � 2
1��
3
p �A10B10 2 �A11B1;21 1 A1;21B11�:

�A10b�
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