

Zdrojová literatura Benitez, M. and Hejatko, J. Dynamics of cell-fate determination and patterning in the vascular bundles of Arabidopsis thaliana (submitted) Brady SM, Orlando DA, Lee JY, Wang JY, Koch J, Dinneny JR, Mace D, Ohler U, Benfey PN. 2007. A high-resolution root spatiotemporal map reveals dominant expression patterns. Science 318, 801-806. de Luis Balaguer MA, Fisher AP, Clark NM, Fernandez-Espinosa MG, Moller BK, Weijers D, Lohmann JU, Williams C, Lorenzo O, Sozzani R. 2017. Predicting gene regulatory networks by combining spatial and temporal gene expression data in Arabidopsis root stem cells. Proc Natl Acad Sci U S A 114(36): E7632-E7640 Eden, E., Navon, R., Steinfeld, I., Lipson, D., and Yakhini, Z. (2009). GOrilla: a tool for discovery and visualization of enriched GO terms in ranked gene lists. BMC Bioinformatics 10, 48. Fucile G, Di Biase D, Nahal H, La G, Khodabandeh S, Chen Y, Easley K, Christendat D, Kelley L, Provart NJ. 2011. ePlant and the 3D data display initiative: integrative systems biology on the world wide web. PLoS One 6, e15237. Karaiskos N, Wahle P, Alles J, Boltengagen A, Ayoub S, Kipar C, Kocks C, Rajewsky N, Zinzen RP (2017) The Drosophila embryo at single-cell transcriptome resolution. Science 358, 194-199

- Lecuyer, E., Yoshida, H., Parthasarathy, N., Alm, C., Babak, T., Cerovina, T., Hughes, T.R., Tomancak, P., and Krause, H.M. (2007). Global analysis of mRNA localization reveals a prominent role in organizing cellular architecture and function. Cell 131, 174-187.
- Nevo-Dinur, K., Nussbaum-Shochat, A., Ben-Yehuda, S., and Amster-Choder, O. (2011). Translation-independent localization of mRNA in E. coli. Science 331, 1081-1084

Osnova Struktura genů • Metody analýzy genové exprese Kvalitativní analýza exprese genů • Příprava transkripční fůze promotoru analyzovaného genu s • reporterovým genem (gen zpravodaj) Příprava translační fůze kódující oblasti analyzovaného genu s . reporterovým genem Využití dostupných dat ve veřejných databázích • Tkáňově a buněčně specifická analýza genové exprese • Kvantitativní analýza exprese DNA čipy • Next gen transkripční profilování • Systémová biologie Definice • Nástroje • Genová ontologie Bayesovské sítě •

Modelování molekulárních/genových regulačních sítí

•

Struktura genů

- promotor
- počátek transkripce
- 5´UTR
- počátek translace
- místa sestřihu
- stop kodon
- 3´UTR
- polyadenylační signál

Osnova

- Struktura genů
- Metody analýzy genové exprese

Translační fůze

Translační fůze kódující oblasti analyzovaného genu s repotérovým genem

příprava transgenních organismů nesoucích tuto rekombinantní DNA a jejich histologická analýza

oproti transkripční fůzi umožňuje analyzovat např. intracelulární lokalizaci genového produktu (proteinu) nebo jeho dynamiku

Translační fůze kódující oblasti analyzovaného genu s repotérovým genem

Microarray expression profiles of 19 fluorescently sorted GFP-marked lines were analyzed (3-9, 23, 24). The colors associated with each marker line reflect the developmental stage and cell types sampled. Thirteen transverse sections were sampled along the root's longitudinal axis (red lines) (10). CC, companion cells.

Microarray expression profiles of 19 fluorescently sorted GFP-marked lines were analyzed (3–9, 23, 24). The colors associated with each marker line reflect the developmental stage and cell types sampled. Thirteen transverse sections were sampled along the root's longitudinal axis (red lines) (10). CC, companion cells.

Microarray expression profiles of 19 fluorescently sorted GFP-marked lines were analyzed (3–9, 23, 24). The colors associated with each marker line reflect the developmental stage and cell types sampled. Thirteen transverse sections were sampled along the root's longitudinal axis (red lines) (10). CC, companion cells.

Microarray expression profiles of 19 fluorescently sorted GFP-marked lines were analyzed (3-9, 23, 24). The colors associated with each marker line reflect the developmental stage and cell types sampled. Thirteen transverse sections were sampled along the root's longitudinal axis (red lines) (10). CC, companion cells.

Microarray expression profiles of 19 fluorescently sorted GFP-marked lines were analyzed (3–9, 23, 24). The colors associated with each marker line reflect the developmental stage and cell types sampled. Thirteen transverse sections were sampled along the root's longitudinal axis (red lines) (10). CC, companion cells.

Microarray expression profiles of 19 fluorescently sorted GFP-marked lines were analyzed (3-9, 23, 24). The colors associated with each marker line reflect the developmental stage and cell types sampled. Thirteen transverse sections were sampled along the root's longitudinal axis (red lines) (10). CC, companion cells.

 Struktura genů Metody analýzy genové exprese Kvalitativní analýza exprese genů Připrava transkripční fůze promotoru analyzovaného genu s reporterovým genem (gen zpravodaj) Připrava translační fůze kódující oblasti analyzovaného genu s reporterovým genem Využití dostupných dat ve veřejných databázích Tkáňově a buněčně specifická analýza genové exprese 	
 Kvantitativni analýza exprese DNA čipy 	

 Příprava translační fůze kódující oblasti analyzovaného genu s reporterovým genem Využití dostupných dat ve veřejných databázích Tkáňově a buněčně specifická analýza genové exprese Kvantitativní analýza exprese DNA a proteinové čipy Next gen transkripční profilování 	= M	etody analýzy genové exprese Kvalitativní analýza exprese genů Připrava transkripční fůze promotoru analyzovaného genu s reporterovým genem (gen zpravodaj)	
 Kvantitativní analýza exprese DNA a proteinové čipy Next gen transkripční profilování 		 Připrava translační fůze kódující oblasti analyzovaného genu s reporterovým genem Využiti dostupných dat ve veřejných databázích Tkáňově a buněčně specifická analýza genové exprese 	
 Viz přístupy systémové biologie níže 		 Kvantitativní analýza exprese DNA a proteinové čipy Next gen transkripční profilování Viz přístupy systémové biologie níže 	

Struktura genů
Metody analýzy genové exprese
 Kvalitativní analýza exprese genů
 Příprava transkripční fůze promotoru analyzovaného genu s reporterovým genem (gen zpravodaj)
 Příprava translační fůze kódující oblasti analyzovaného genu s reporterovým genem
 Využití dostupných dat ve veřejných databázích
Tkáňově a buněčně specifická analýza genové exprese
Kvantitativní analýza exprese
 DNA čipy
 Next gen transkripční profilování
 Viz přístupy systémové biologie níže
Systémová biologie
Definice

Systémová biologie - definice

Systémová biologie je vědecký směr v biologii využívající přístupy dalších věd, především biochemie, chemie, informatiky a matematiky. Zabývá se studiem biologických funkcí a mechanizmů vzniklých následkem komplexních interakcí v biologických systémech.

Základní myšlenkou je komplexní pohled, opak *redukcionismu* (který je převládajícím paradigmatem například v molekulární biologii), tedy předpoklad, že systém je víc než součet jeho částí.

Systémová biologie často pracuje s modely, které jsou vytvářeny matematickými a informatickými přístupy na základě biologických dat, jejichž vlastnosti jsou posléze porovnávány s vlastnostmi živých systémů (*Wikipedia*).
Systémová biologie - definice

Systémová biologie se zabývá studiem biologických systémů, jejichž chování nelze redukovat na *lineární součet funkcí jejich částí*. Systémová biologie nemusí nutně zahrnovat velké množství komponent nebo rozsáhlých datových souborů, jako je tomu v genomice nebo konektomice, ale často vyžaduje metody kvantitativního modelování vypůjčené z fyziky (*Nature*).

37

Systémová biologie - definice

Definice dle Dr. Nathana Price,

zástupce ředitele Ústavu pro systémovou biologii, Seattle, USA; https://www.youtube.com/watch?v=OrXRI_8UFHU.

Výsled	lky –or	Υ	ic	:ky	íC	h :	studií vs.
biologi	cky rel	e	Va	an	tr	ní z	távěry
 Výsledky –on dat, např. ge biologicky re 	nických studií repr ny s rozdílnou exp levantní závěry?	reze	entují sí. A	enoi le jak	rmní ∶z⊔	množ nich zí	skat 1., bioRxiv 10.1101/2023.07.26.550726
gene	locus sam	ple_1 sa	mple_2 statu	s value_1	alue_2	og2(fold_change)	test_stat p_value q_value significant
AT1G07795	1:2414285-2414967 WT	M	г ок	0	1,1804	1.79769e+308	08 6.8885e-05 1 yes
HRS1	1:4556891-4558708 WT	M	г ок	0	0,696583	1.79769e+308	08 6.61994e-06 05 yes
ATMLO14	1:9227472-9232296 WT	M	г ок	0	0,514609	1.79769e+308	1.79769e+3 0,00053505 08 9.74219e-05 5yes
NRT1.6	1:9400663-9403789 WT	M	г ок	0	0,877865	1.79769e+308	1.79769e+3 3.50131e- 08 3.2692e-08 07 yes
AT1G27570	1:9575425-9582376 WT	M	гок	0	2.0829	1.79769e+308	1.79769e+3 08 9.76039e-06 6.647e-05 ves
AT1060095	1-22150735-22162410 WT	M	ок	0	0.688588	1 70760e+308	1.79769e+3 9.84992e- 08 9.5901e-08 07 view
474003020	1:00200 008515 1417				1 79950	70760+208	1.79769e+3
AT 1603020	1.050200-050313 W1	in the second se			1,70035	1.787086+300	1.79769e+3
ATIGI3609	1:4002720-4003471 W1	M	UK .	0	3,00014	1.797098+306	1.79769e+3
AT1G21550	1:7553100-7553876 WT	M	г ок	0	0,562868	1.79769e+308	08 0,00115582 0,00471497 yes 1.79769e+3 1.91089e-
AT1G22120	1:7806308-7809632 WT	M	гок	0	0,617354	1.79769e+308	08 2.48392e-06 05 yes 1.79769e+3 0.00028514
AT1G31370	1:11238297-11239363 WT	M	г ок	0	1,46254	1.79769e+308	08 4.83523e-05 3 yes 1.79769e+3 5.46603e-
APUM10	1:13253397-13255570 WT	M	г ок	0	0,581031	1.79769e+308	08 7.87855e-06 05 yes
AT1G48700	1:18010728-18012871 WT	M	г ок	0	0,556525	1.79769e+308	08 6.53917e-05 6 yes
AT1G59077	1:21746209-21833195 WT	M	г ок	0	138,886	1.79769e+308	08 0,00122789 0,00496816 yes
AT1G60050	1:22121549-22123702 WT	M	г ок	0	0,370087	1.79769e+308	1.79769e+3 08 0,00117953 0,0048001 yes
AT4G15242	4:8705786-8706997 WT	M	г ок	0,00930712	17,9056	10,9098	-4,40523 1.05673e-05 7.13983e-05 yes
AT5G33251 AT4G12520	5:12499071-12500433 WT 4:7421055-7421738 WT	M	г ок г ок	0,0498375 0,0195111	52,2837 15,8516	10,0349 9,66612	-9,8119 0 Oyes -3,90043 9.60217e-05 0,000528904 yes
AT1G60020 AT5G15360	1:22100651-22105276 WT 5:4987235-4989182 WT	M	г ок	0,0118377 0,0988273	7,18823 56,4834	9,24611 9,1587	-7,50382 6.19504e-14 1.4988e-12 yes -10,4392 0 0 yes

Excample of an output of transcriptional profiling study using Illumina sequencing performed in our lab. Shown is just a tiny fragment of the complete list, copmprising about 7K genes revealing differential expression in the studied mutant.

Original video at https://www.youtube.com/watch?v=-7GK1HXwCtE.

For more detailed description see e.g. <u>https://www.youtube.com/watch?v=fCd6B5HRaZ8</u>.

	1ky _omickych studu ys
vysicc	
1 A A A A A A A A A A A A A A A A A A A	
hiology	icky rolovantni zavorv
NUUUU	
J	
Transkripční	profilování identifikovalo víc než <mark>9K odlišně</mark>
regulovanýci	h genů
	Ddii, Arnaud et al., <i>bioRxiv</i> 10.1101/2023.07.26.550726
gene	iocus sampie_1 sampie_2 status value_1 value_2 iog2(toid_change) test_stat p_value q_value significant 1.77750e-73 0.00039180
AT1G07795	1.2414285-2414967 WT MT OK 0 1.18041.79769e+308 08 6.88885+05 1 yes 1.73769e+3 4.67708+
HRS1	1.4556891-4558708 WT MT OK 0 0.6965831.79769e+308 08 6.6194e-06 05 yes 1.797769e+30 00 0.0005565
ATML014	1-9227472-9232296 WT MT OK 0 0,5146091.79769e+308 08 9.74219e-05 5yes
NRT1.6	1.9400863-9403789 WT MT OK 0.8778651.79769e+308 06 3.2692e-06 07 yes
AT1G27570	1.9575425-9582376 WT MT OK 0 2.08291.79769e+308 08 9.76039e-06 6.647e-05 yes
AT1G60095	1.79769e+3 9.84992e- 1.22159735-22162419 WT MT OK 0 0.6885881.79769e+308 08 9.595016-08 07 ves
AT1003020	1.79799e+3 1.60920E.008515 W/T MT O/C 0 1.788501.707260e+308 08 0.00013015 0.0277055 wee
1100020	1.79769e+3
AT1G13609	1.4652720-4663471 WT MT OK 0 3.558141.79769e+308 0 0 0,00021683 0.00108079 yes 1.79769e+30 1.79769e+3
AT1G21550	1:7553100-7553876 WT MT OK 0 0,5628881.79769e+308 08 0,00115582.004071497yes 1,79769e+3 1,97969e+3
AT1G22120	1:7806308-7809632 WT MT OK 0 0.6173541.79769e+308 08 2.48392e-06 05 yes
AT1G31370	1:11238297-11239363 WT MT OK 0 1,46254 1.79769e+308 06 4.83523e-05 3yes
APUM10	1.7/9798+43 5.400036- 1:13255397-13255570 WT MT OK 0 0.5810311.79769e+308 08 7.87555-06 05 yes
AT1G48700	1.18769e+3 0.00037473 1:18010728-18012871 WT MT OK 0 0.5565251.79769e+308 08 6.53317c-05 6 yes
AT1050077	1.27746200_21933195 WT NT OK 0 138 8861 70750ax108 0 00127258 0 00005816 see
	1.79769e43
AT IGOUDU	1/22/12/194/22/12/10/2 VI MI OK U U,3/008/1./9/09e+308 U8 U,0/01/1/9/5 U,0/4800/1/e5
A14G15242	4.33/US/38-43/US98-47/US98/ WT MT OK 0.00930712 17,9056 10,9098 -4,405231.05673e-05 7.13983e-05 yes
AT5G33251	5:12499071-12500433 WT MT OK 0.0498775 52,2837 10,0349 -9,8119 0 0 yes 47221055-2472738 WT MT OK 0.0195111 15,8516 9,6612 -3,300435 96275-06. 000529604 www
AT4G12520	
AT4G12520	

Excample of an output of transcriptional profiling study using Illumina sequencing performed in our lab. Shown is just a tiny fragment of the complete list, copmprising about 7K genes revealing differential expression in the studied mutant.

1	Struktura genu	
	Metody analýzy genové exprese	
	Kvalitativní analýza exprese genů	
	 Připrava transkripční fůze promotoru analyzovaného genu s reporterovým genem (gen zpravodaj) 	
	 Připrava translační fůze kódující oblasti analyzovaného genu s reporterovým genem 	
	 Využití dostupných dat ve veřejných databázich 	
	 Tkáňově a buněčně specifická analýza genové exprese 	
	 Kvantitativní analýza exprese 	
	 DNA čipy 	
	 Next gen transkripční profilování 	
11	Systémová biologie	
	Definice	
	 Nástroje 	
	Genová ontologie	
	Genová ontologie	

One of such recent and very useful tools is Gorilla software, freely available at <u>http://cbl-gorilla.cs.technion.ac.il/</u>.

LLA					
045482	Call Access of Constant		🚰 - Google	<u>و معامد محمد المحمد المحمد</u>	
1.01E-12	1.6E-9	3.43 (6331,72,999,39)	[+] Show genes	*	
1.77E-12	1.86E-9	3.39 (6331,73,999,39)	[+] Show genes		
2.97E-12	2.34E-9	3.29 (6331,77,999,40)	[+] Show genes		
3.21E-12	2.03E-9	3.34 (6331,74,999,39)	[+] Show genes		
3.64E-12	1.92E-9	3.92 (6331,58,891,32)	[+] Show genes		
5.74E-12	2.59E-9	3.30 (6331,75,999,39)	[+] Show genes		
5.74E-12	2.27E-9	3.30 (6331,75,999,39)	[+] Show genes		
	1.01E-12 1.77E-12 2.97E-12 3.21E-12 3.64E-12 5.74E-12 5.74E-12	1.01E-12 1.6E-9 1.77E-12 1.86E-9 2.97E-12 2.34E-9 3.21E-12 2.03E-9 3.64E-12 1.92E-9 5.74E-12 2.59E-9 5.74E-12 2.27E-9	Image: Note of the second se	Image: Constraint of the second se	Image: Note of the set o

00	_				
GORIL	_LA				
A Results A Results A Results		100,00,00	Country and South States of	the second second	
000				H : A I B and a	
Description	P-value	FDR q-value	Enrichment (N, B, n, b)	Genes	
response to nitrate	4.76E-13	1.5E-9	4.13 (6331,55,891,32)	[+] Show genes	
glucuronoxylan metabolic process	1.01E-12	1.6E-9	3.43 (6331,72,999,39)	[+] Show genes	
xylan biosyuthetic process	1.77E-12	1.86E-9	3.39 (6331,73,999,39)	 L.T. Marke Backson L.T. Marke Backson PORSD - Jeph Rybogenin-Back stech initiation proton 3 FRA exolutin-Background and the step of the step of	
		2.24E.0	2 20 (6221 77 000 40)	[1] Channe and a	

Osnova	
 Struktura genů Metody analýzy genové exprese Kvalitativní analýza exprese genů Připrava transkripční fůze promotoru analyzovaného genu s reporterovým genem (gen zpravodaj) Připrava translační fůze kódující oblasti analyzovaného genu s reporterovým genem Využití dostupných dat ve veřejných databázích Tkáňově a hupěčně specifická analýza genové exprese 	
 Kvantitativní analýza exprese DNA čipy Next gen transkripční profilování Systémová biologie Definice 	
 Nástroje Genová ontologie Bayesovské sítě 	

Osnova	
 Struktura genů 	
Metody analýzy genové exprese	
Kvalitativní analýza exprese genů	
 Příprava transkripční fůze promotoru analyzovaného genu s reporterovým genem (gen zpravodaj) 	
 Připrava translační fůze kódující oblasti analyzovaného genu s reporterovým genem 	
 Využití dostupných dat ve veřejných databázích 	
 Tkáňově a buněčně specifická analýza genové exprese 	
Kvantitativní analýza exprese	
 DNA čipy 	
Next gen transkripční profilování	
 Systémová biologie 	
Definice	
Nástroje	
 Genová ontologie 	
■ Bayesovské sítě	
 Modelování molekulárních/genových regulačních sítí 	\$CEITEC

Modelování molekulárních regulačních sítí Vyhledávání publikovaných dat a vytvoření malé databáze

Interaction	Evidence	References
A-ARRs – CK signaling	Double and higher order type-A ARR mutants show increased sensitivity to CK.	[27]
	Spatial patterns of A-type ARR gene expression and CK response are consistent with partially redundant function of these genes in CK signaling.	[27]
	A-type ARRs decreases B-type ARR6-LUC.	[13]
	Note: In certain contexts, however, some A-ARRs appear to have effects antagonistic to other A-ARRs.	[27]
AHP6 AHP	ahp6 partially recovers the mutant phenotype of the CK receptor WOL.	[9]
	Using an in vitro phosphotransfer system, it was shown that, unlike the AHPs, native AHP6 was unable to accept a phosphoryl group. Nevertheless, AHP6 is able to inhibit phosphotransfer from other AHPs to ARRs.	[9]
1	Benitez and H	lejatko, PLoS One, 2013

Modelování molekulárních regulačních sítí Formulace *logických pravidel* definujících *dynamiku modelu*

Network node	Dynamical rule
СК	2 If ipt=1 and ckx=0 1 If ipt=1 and ckx=1 0 else
СКХ	1 lf barr>0 or arf=2 0 else
AHKs	ahk=ck
AHPs	2 If ahk=2 and ahp6=0 and aarr=0 1 If ahk=2 and (ahp6+aarr<2) 1 If ahk=1 and ahp6<1 0 else
B-Type ARRs	1 lf ahp>0 0 else
A-Type ARRs	1 If arf<2 and ahp>0 0 else
	Benitez and Hejatko, PLoS One, 2013

According to experimental evidence for the system under study, the hormone IAA, the peptide TDIF, and the microRNA MIR165/6 are able to move among the cells. In the case of TDIF and MIR165/6, the mobility is defined as diffusion and is given by the following equation:

g(t+1)T[i] = H(g(t)[i] + D(g(t)[i+1]+g(t)[i-1] - N(g(t)[i]))-b)(2),

where g(t)T[i] is the total amount of TDIF or MIR165 in cell (i). *D* is a parameter that determines the proportion of *g* that can move from any cell to neighboring ones and is correlated to the diffusion rate of *g*. *b* is a constant corresponding to a degradation term. *H* is a step function that converts the continuous values of *g* into a discrete variable that may attain values of 0, 1 or 2. *N* stands for the number of neighbors in each cell. Boundary conditions are zero-flux. In the case of IAA, the mobility is defined as active transport dependent on the radial localization of the PIN efflux transporters and is defined by the equation:

iaa(t+1)T[i]=Hiaa(iaa(t)[i]+Diaa(pin(t)[i+1])(iaa(t)[i+1])+Diaa(pin(t)[i-1])(iaa(t)[i-1])-N(Diaa)(pin(t)[i])(iaa(t)[i])-biaa) (3),

where *Diaa* is a parameter that determines the proportion of IAA that can be transported among cells. The transport depends on the presence of IAA and PIN in the cells and *biaa* corresponds to a degradation term. As in equation 2, *H* is a step function that converts the continuous values to discrete ones and *N* stands for the number of neighbors in each cell. Boundary conditions for IAA motion are also zero-flux.

The proposed model considers data that we identified and evaluated through an extensive search (up to January 2012). It takes into account molecular interactions, hormonal and expression patterns, and cell-to-cell communication processes that have been reported to affect vascular patterning in the bundles of Arabidopsis. The model components and interactions are graphically presented in the figure above. In the network model, nodes stand for molecular elements regulating one another's activities. Most of the nodes can take only 1 or 0 values (light gray nodes in the figure), corresponding to "present" or "not present," respectively. Since the formation of gradients of hormones and diffusible elements may have important consequences in pattern formation, mobile elements TDIF and MIR, as well as members of the CK and IAA signaling systems, can take 0, 1 or 2 values (dark gray nodes in the figure above) Benitez and Hejatko, PLoS One, 2013.

Modelování molekulárních regulačních sítí

Interaction	Evidence	References	
$CK \rightarrow PIN7$ radial localization	Predicted interaction (could be direct or indirect)		
	Informed by the following data:		
	During the specification of root vascular cells in Arabidopsis thaliana, CK regulates the radial localization of PIN7.	[18]	
	Expression of PIN7:GFP and PIN7::GUS is upregulated by CK with no significant influence of ethylene.	[18,20]	
	In the root, CK signaling is required for the CK regulation of PIN1, PIN3, and PIN7. Their expression is altered in wol, cre1, ahk3 and ahp6 mutants.	[19]	
$CK \rightarrow APL$	Predicted interaction (could be direct or indirect)		
	Consistent with the fact that APL overexpression prevents or delays xylem cell differentiation, as does CKs.	[21]	
	Partially supported by microarray data and phloem-specific	(TAIR, ExpressionSet:10	

In comparison to the model shown on slide 21, the final version of the model contains the predicted interactions (dashed lines).

In the root, several functional and anatomical units could be recognized.

Along the longitudinal axis, the root meristem forms a distal root tip, including stem cell niche, columella and lateral root cap, proximal meristem with a population of rapidly dividing cells and elongation zone where cells leaving the root meristem undergo rapid elongation and mature.

Specific subpopulations from the stem cell niche (SCN) were isolated via protoplasting the root (removing the cell wall enzymatically allowing to release the individual cells) of several specific reporter lines (A-D in the figure on the right) and GFP-positive cells were isolated using cell sorter. The mRNA was isolated and transcriptional; profiling via NGS was performed.

By comparing the cell type-specific transcriptomes with developmental-specific root transcriptomes (isolating mRNA from meristematic (1, the figure on the left), elongation (2) and differentiation (I3) zones, the stem cell-specific transcritomes were identified.

GENIST algorithm

The MATLAB source code for GENIST is publically available at https://github.com/madeluis/GENIST.

For the detailed description of the procedure, see de Luis Balaguer et al., 2017, SI (https://www.pnas.org/content/114/36/E7632/tab-figures-data)

GENIST algorithm

The MATLAB source code for GENIST is publically available at https://github.com/madeluis/GENIST.

For the detailed description of the procedure, see de Luis Balaguer et al., 2017, SI (https://www.pnas.org/content/114/36/E7632/tab-figures-data)

Network of the 201 TFs enriched in the SCN, inferred with the 12 developmental time points of the Arabidopsis root. Clusters of nodes indicate groups of TFs functionally related or functioning in the same cell type. Node sizes indicate importance of the nodes in terms of the number of TFs that they regulate. The highly connected groups of genes or subnetworks correspond to the dynamic Bayesian network (DBN) inferred for each cluster. Green (orange) nodes represent factors that are differentially down-regulated (up-regulated) in the pan mutant with respect to Col-0 wild type. Blue represents the PAN node.

Network of QC-enriched TFs. (A) Network among the QC-enriched TFs inferred with the 12 developmental time points of the Arabidopsis root. Node sizes indicate importance of the nodes in terms of the number of TFs that they regulate. Color-coded nodes represent genes downstream of PERIANTHA (PAN) that were used for the mathematical model and experimental confirmations.

PAN subnetwork in the QC inferred with the 12 developmental time points of the Arabidopsis root. (A) Optimal configuration (combination of signs— activation or repression—of the regulations that were inferred with undefined signs, which best fits the data in the simulations of the equations) of the subnetwork of PAN and its downstream targets. (B and C) Resulting expression values of PAN and its downstream targets, over time, after simulating the optimal configuration of the model. Simulations were run for 5 d and plots are shown until all factors reached steady states in the WT and pan mutant simulations. (B)Model simulated with the fitted equation parameters. (C)Model simulated with the PAN-associated parameters set to zero to simulate a pan mutant situation. (D) Normalized expression values of PAN and its predicted downstream targets in Col-0 wild type and in pan mutant. Statistically significant changes of expression between the mutant and the wild type, *q < 0.05.

In the WT simulation, all targets reached steady states by day 1 with subtle changes of expression during the transients (time length until expression values reach their steady states). On the contrary, the pan mutant simulation showed that EIN3 and WIP4 presented high expression values during the transients and reached steady states at later stages (days 3 and 4, respectively). These delayed responses and initial activations of EIN3 and WIP4 reflect the prediction that these genes are indirectly affected by PAN. Further, the dynamics of our simulations depict that BRAVO, NTT, and WIP4 are, in our equations, connected through feedback loops. During the transient phase of the mutant simulation, NTT and BRAVO show an exponential decay, which is consistent with the prediction that they activate each other in the absence of PAN. However, their steady states are not immediately reached since they are activated by WIP4 and EIN3. Conversely, WIP4, which is repressed by a decaying NTT, shows high levels of expression.

With the exception of indirect target EIN3, the qRT PCR-based gene expression quantification confirmed the predicted expression values.

Klíčové koncepty – systémová biologie

- Systémová biologie se pokouší identifikovat nové vlastnosti/chování skupin funkčních podjednotek (regulátorů/molekul), které nejsou prostým součtem vlastností jednotlivých podjednotek, ale jsou novou vlastností závislou na způsobu jejich vzájemné interakce
- Využívá matematické modely, často Bayesovské sítě
- Genové regulační sítě lze identifikovat i pomocí (semi)automatických nástrojů z velkých datových sad (např. genové exprese na úrovni celého genomu)
- Využití metod strojového účení ("umělá inteligence")

CEITEC