Genomics and Proteomics
Genomics
1. Basics of bioinformatics
- Definition
- Database sources
- Basic analytical tools - search for similar sequences, identification of open reading frames, search for consensus sequences, construction of gene maps
2. Biological macromolecules - structure and function
- Nucleic acids and nucleotids
- Proteins and aminoacids
- Polysacharides and their subunits
3. Basic processes and functions of genetic material
- Replication
- Transscription and post-transcriptional editing, reverse transcription
- Translation and genetic code
- Mutations and DNA repair
4. Structure of chromosomes and chromatin
- Prokaryotic and eukaryotic chromosome, its topology and composition
- Chromatin and nucleosome as its basic subunit
- Basic functional elements of eukaryotic chromosomes - centromeres, telomeres and replication origins non-histone chromatin proteins
5. Basic structural features of the organization of genomes of individual organisms, including humans
- Coding and non-coding DNA - structural genes, RNA genes (rRNA, pre-miRNA and shRNA), transposons, gene distribution
- Comparison of genomes of different types of organisms
- Gene catalogues
- Organellar genomes
6. Epigenetics and epigenomics
- Definition of epigenetics
- Epigenetic processes and their molecular mechanisms (examples)
- Epigenetic mechanisms of gene expression regulation
- Genetic and epigenetic regulation of ontogeny
7. Gene
- Mendel's concept, Mendel's principles of heredity
- Other possible definitions of a gene/concept of a gene, in terms of its function and material nature
- Basic structure of prokaryotic and eukaryotic genes
8. Identification of genes
- Ab initio
- Experimental
9. Reverse genetics
- targeted mutagenesis and genome editing. Preparation, Identification and analysis of sequence-specific mutants
- Methods of identifying the exact location of advertising or editing
- Confirmation of a causal link between phenotype and mutation
10. Direct genetics
- Use of insertional mutant libraries in direct genetics procedures
- Searching libraries of insertional mutants according to different criteria, phenotypic profiling
- Identification of the mutated locus
11. Chemical genetics and its applications
12. Regulation of gene expression
13. Mechanism of gene silencing by RNA interference and its application in practice
- positive and negative regulation of gene expression, induction and repression
- Regulation of gene expression in prokaryotes and viruses, examples
- Regulation of gene expression in eukaryotes
14. Gene expression analysis
- Quantitative - qRT PCR, chips, RNASeq - NGS transcriptional profiling
- Qualitative - transcriptional fusion, translational fusion, tissue- and cell-specific analysis - transcriptional maps, in vivo RNA localization analysis
- In silico - electronic databases and searching in them
15. Sequencing and its use in genomics
- Genome/transcriptome complexity reduction methods for sequence analysis - renaturation and exonucleases, methylation filtering, chromosome sorting, targeted rRNA/rDNA depletion, panels
- The principle of Sanger sequencing
- Principles of the main current NGS and third-generation sequencing methods - Solexa/Illumina, Ion Torrent, Oxford Nanopore, PacBio
16. Genomics of cellular communications
- Methods of localization of molecules in vivo - proteins, RNA, RNA localization codes
- Intracellular protein transport and its functional significance - protein sorting and its signals, nuclear transport, mitochondrial transport
- Advanced confocal microscopy techniques in the study of intracellular localization of proteins - FRAP, photoactivatable fluorescent proteins, FLIM, FCS
17. Basics of systematic biology
- Concept
- Mechanisms of reciprocal gene regulation
- Gene regulatory networks - positive and negative self-regulatory loops and their functional significance
18. Systems biology tools
- Gene Ontology Analysis
- Mathematical modelling of gene regulatory networks
19. Practical applications of functional genomics
- Individualized medicine - multigene disease conditioning, use of gene clustering
- Molecular diagnostics and gene therapy
- Regenerative medicine
- Biotechnology - importance and safety of GMOs
Proteomics
1. Introduction to proteomics
- Peptide, protein, proteoform, proteome, proteotype, genome-transcriptome-proteome-metabolome relationship
- Biogenic origin of proteins and peptides, amino acids and their properties, primary, secondary, tertiary and quaternary structure, types of proteins - structural, functional, post-translational modifications - basic types and their importance
- Enzymes as biocatalysts, enzyme stability, active site - cofactors, coenzymes, prosthetic groups, enzyme kinetics - enzyme reaction rate, activity, Michaelis-Menten equation, determination of KM and maximum rate, enzyme regulation - activation, inhibition
- Evolution of proteins and protein complexes, mutations (synonymous and non-synonymous), duplication, divergence, selection pressures; domain rearrangements, neofunctionalization
2. Methods in proteomics
- Preparation of protein samples - basic procedures of protein isolation, fractionation of modified peptides/proteins
- Recombinant proteins - expression system (bacterial, yeast, insect cells with baculoviruses), basic procedures of isolation and purification of recombinant proteins, use of affinity anchors and their removal
- Separation and fractionation of proteins/peptides - chromatographic methods (RPLC, IMAC, MOAC, SEC, HILIC, HIC), electromigration methods (electrophoresis, isoelectric focusing), multidimensional separation of complex mixtures, importance of separation in proteomics
- Characterization of proteins - immunoassay, mass spectrometry (principle; ionization techniques; mass analysis, ion detection; combined techniques; tandem mass spectrometry; qualitative, quantitative and structural analysis), methods for determining the molecular weight of proteins
3. Expression/differential proteomics
- Protein expression and its regulation - gene level, splicing, post-translational silencing, etc.
- Expression proteomics approaches - isolation, separation, proteome/proteotype characterization
- Qualitative analysis - protein identification, its methods and procedures (mass spectrometry, database searching, de novo sequencing, immunoassay, Edman sequencing)
- Protein quantification - methods and procedures (principle of relative and absolute quantification, isotope mass labelled and label-free MS approach, immunoblot (western blot))
4. Structural proteomics
- Protein structure - domains, folding
- Relationship of structure, properties and function of proteins - transport, immunochemistry, cytoskeleton, receptors
- Structural analysis approaches - methods and their applications (CD, X-ray crystallography...)
- Modelling - structural model and its refinement
5. Funkční proteomika
- Proteinové interakce – domény, typy interakcí (protein-protein, protein-DNA, protein-ligand), interaktom, komplexom, význam proteinových interakcí
- Vliv PTM na proteinové interakce – proteinové domény rozeznávající PTM
- Metody analýzy protein-proteinových interakcí in vivo – koimunoprecipitace, kvasinkový dvouhybridní test (Y2H), koimunoprecipitace, tandemová afinitní purifikace (TAP-Tag), bimolekulární fluorescenční komplementace (BiFC), analýza zprostředkované membránové vazby (MeRA)
- Charakterizace proteinových komplexů – metody izolace a analýzy proteinových komplexů
6. Proteomická bioinformatika
- Proteomické databáze a nástroje – typy, obsažené informace
- Využití bioinformatických databází v proteomice
7. Proteomické aplikace
- Možnosti využití proteomiky v základním a aplikovaném výzkumu (studium mechanizmů buněčných procesů, struktura proteinů, klinické aplikace, identifikace bakterií atp.)
- Základní experimentální přístupy pro řešení výše uvedených aplikací