Genomics and Proteomics

Genomics

 1. Basics of bioinformatics
  • Definition
  • Database sources
  • Basic analytical tools - search for similar sequences, identification of open reading frames, search for consensus sequences, construction of gene maps
2. Biological macromolecules - structure and function
  • Nucleic acids and nucleotids
  • Proteins and aminoacids
  • Polysacharides and their subunits
3. Basic processes and functions of genetic material
  • Replication
  • Transscription and post-transcriptional editing, reverse transcription
  • Translation and genetic code
  • Mutations and DNA repair
4. Structure of chromosomes and chromatin
  • Prokaryotic and eukaryotic chromosome, its topology and composition
  • Chromatin and nucleosome as its basic subunit
  • Basic functional elements of eukaryotic chromosomes - centromeres, telomeres and replication origins non-histone chromatin proteins
5. Basic structural features of the organization of genomes of individual organisms, including humans
  • Coding and non-coding DNA - structural genes, RNA genes (rRNA, pre-miRNA and shRNA), transposons, gene distribution
  • Comparison of genomes of different types of organisms
  • Gene catalogues
  • Organellar genomes
6. Epigenetics and epigenomics
  • Definition of epigenetics
  • Epigenetic processes and their molecular mechanisms (examples)
  • Epigenetic mechanisms of gene expression regulation
  • Genetic and epigenetic regulation of ontogeny
7. Gene
  • Mendel's concept, Mendel's principles of heredity
  • Other possible definitions of a gene/concept of a gene, in terms of its function and material nature
  • Basic structure of prokaryotic and eukaryotic genes
8. Identification of genes
  • Ab initio
  • Experimental
9. Reverse genetics
  • targeted mutagenesis and genome editing. Preparation, Identification and analysis of sequence-specific mutants
  • Methods of identifying the exact location of advertising or editing
  • Confirmation of a causal link between phenotype and mutation
10. Direct genetics
  • Use of insertional mutant libraries in direct genetics procedures
  • Searching libraries of insertional mutants according to different criteria, phenotypic profiling
  • Identification of the mutated locus
11. Chemical genetics and its applications
12. Regulation of gene expression
13. Mechanism of gene silencing by RNA interference and its application in practice
  • positive and negative regulation of gene expression, induction and repression
  • Regulation of gene expression in prokaryotes and viruses, examples
  • Regulation of gene expression in eukaryotes
14. Gene expression analysis
  • Quantitative - qRT PCR, chips, RNASeq - NGS transcriptional profiling
  • Qualitative - transcriptional fusion, translational fusion, tissue- and cell-specific analysis - transcriptional maps, in vivo RNA localization analysis
  • In silico - electronic databases and searching in them
15. Sequencing and its use in genomics
  • Genome/transcriptome complexity reduction methods for sequence analysis - renaturation and exonucleases, methylation filtering, chromosome sorting, targeted rRNA/rDNA depletion, panels
  • The principle of Sanger sequencing
  • Principles of the main current NGS and third-generation sequencing methods - Solexa/Illumina, Ion Torrent, Oxford Nanopore, PacBio
16. Genomics of cellular communications
  • Methods of localization of molecules in vivo - proteins, RNA, RNA localization codes
  • Intracellular protein transport and its functional significance - protein sorting and its signals, nuclear transport, mitochondrial transport
  • Advanced confocal microscopy techniques in the study of intracellular localization of proteins - FRAP, photoactivatable fluorescent proteins, FLIM, FCS
17. Basics of systematic biology
  • Concept
  • Mechanisms of reciprocal gene regulation
  • Gene regulatory networks - positive and negative self-regulatory loops and their functional significance
18. Systems biology tools
  • Gene Ontology Analysis
  • Mathematical modelling of gene regulatory networks
19. Practical applications of functional genomics
  • Individualized medicine - multigene disease conditioning, use of gene clustering
  • Molecular diagnostics and gene therapy
  • Regenerative medicine
  • Biotechnology - importance and safety of GMOs

Proteomics

1. Introduction to proteomics
  • Peptide, protein, proteoform, proteome, proteotype, genome-transcriptome-proteome-metabolome relationship
  • Biogenic origin of proteins and peptides, amino acids and their properties, primary, secondary, tertiary and quaternary structure, types of proteins - structural, functional, post-translational modifications - basic types and their importance
  • Enzymes as biocatalysts, enzyme stability, active site - cofactors, coenzymes, prosthetic groups, enzyme kinetics - enzyme reaction rate, activity, Michaelis-Menten equation, determination of KM and maximum rate, enzyme regulation - activation, inhibition
  • Evolution of proteins and protein complexes, mutations (synonymous and non-synonymous), duplication, divergence, selection pressures; domain rearrangements, neofunctionalization
2. Methods in proteomics
  • Preparation of protein samples - basic procedures of protein isolation, fractionation of modified peptides/proteins
  • Recombinant proteins - expression system (bacterial, yeast, insect cells with baculoviruses), basic procedures of isolation and purification of recombinant proteins, use of affinity anchors and their removal
  • Separation and fractionation of proteins/peptides - chromatographic methods (RPLC, IMAC, MOAC, SEC, HILIC, HIC), electromigration methods (electrophoresis, isoelectric focusing), multidimensional separation of complex mixtures, importance of separation in proteomics
  • Characterization of proteins - immunoassay, mass spectrometry (principle; ionization techniques; mass analysis, ion detection; combined techniques; tandem mass spectrometry; qualitative, quantitative and structural analysis), methods for determining the molecular weight of proteins
3. Expression/differential proteomics
  • Protein expression and its regulation - gene level, splicing, post-translational silencing, etc.
  • Expression proteomics approaches - isolation, separation, proteome/proteotype characterization
  • Qualitative analysis - protein identification, its methods and procedures (mass spectrometry, database searching, de novo sequencing, immunoassay, Edman sequencing)
  • Protein quantification - methods and procedures (principle of relative and absolute quantification, isotope mass labelled and label-free MS approach, immunoblot (western blot))
4. Structural proteomics
  • Protein structure - domains, folding
  • Relationship of structure, properties and function of proteins - transport, immunochemistry, cytoskeleton, receptors
  • Structural analysis approaches - methods and their applications (CD, X-ray crystallography...)
  • Modelling - structural model and its refinement
5. Funkční proteomika
  • Proteinové interakce – domény, typy interakcí (protein-protein, protein-DNA, protein-ligand), interaktom, komplexom, význam proteinových interakcí
  • Vliv PTM na proteinové interakce – proteinové domény rozeznávající PTM
  • Metody analýzy protein-proteinových interakcí in vivo – koimunoprecipitace, kvasinkový dvouhybridní test (Y2H), koimunoprecipitace, tandemová afinitní purifikace (TAP-Tag), bimolekulární fluorescenční komplementace (BiFC), analýza zprostředkované membránové vazby (MeRA)
  • Charakterizace proteinových komplexů – metody izolace a analýzy proteinových komplexů
6. Proteomická bioinformatika
  • Proteomické databáze a nástroje – typy, obsažené informace
  • Využití bioinformatických databází v proteomice
7. Proteomické aplikace
  • Možnosti využití proteomiky v základním a aplikovaném výzkumu (studium mechanizmů buněčných procesů, struktura proteinů, klinické aplikace, identifikace bakterií atp.)
  • Základní experimentální přístupy pro řešení výše uvedených aplikací

You are running an old browser version. We recommend updating your browser to its latest version.

More info